Automated Artery Localization and Vessel Wall Segmentation of Magnetic Resonance Vessel Wall Images using Tracklet Refinement and Polar Conversion


Automated Artery Localization and Vessel Wall Segmentation of Magnetic Resonance Vessel Wall Images using Tracklet Refinement and Polar Conversion

Li Chen, Jie Sun, Gador Canton, Niranjan Balu, Xihai Zhao, Rui Li, Thomas S. Hatsukami, Jenq-Neng Hwang, Chun Yuan

Quantitative analysis of blood vessel wall structures is important to study atherosclerotic diseases and assess cardiovascular event risks. To achieve this, accurate identification of vessel luminal and outer wall contours is needed. Computer-assisted tools exist, but manual preprocessing steps, such as region of interest identification and/or boundary initialization, are still needed. In addition, prior knowledge of the ring shape of vessel walls has not been fully explored in designing segmentation methods. In this work, a fully automated artery localization and vessel wall segmentation system is proposed. A tracklet refinement algorithm was adapted to robustly identify the artery of interest from a neural network-based artery centerline identification architecture. Image patches were extracted from the centerlines and converted in a polar coordinate system for vessel wall segmentation. The segmentation method used 3D polar information and overcame problems such as contour discontinuity, complex vessel geometry, and interference from neighboring vessels. Verified by a large (>32000 images) carotid artery dataset collected from multiple sites, the proposed system was shown to better automatically segment the vessel wall than traditional vessel wall segmentation methods or standard convolutional neural network approaches. In addition, a segmentation uncertainty score was estimated to effectively identify slices likely to have errors and prompt manual confirmation of the segmentation. This robust vessel wall segmentation system has applications in different vascular beds and will facilitate vessel wall feature extraction and cardiovascular risk assessment.


arXiv link: https://arxiv.org/abs/1909.02087

Journal paper published on IEEE Access: https://ieeexplore.ieee.org/document/9269957

DOI: 10.1109/ACCESS.2020.3040616

Main article:

09269957.pdf

Supplementary material: 

Supplementary material access2.docx

Last Article

Comment 评论



Share 分享

New Users 最新加入

  • :)

  • Cheng Dan

  • 13111111111

New comments 最新评论

test123: aasdas Details Apr 13 16:39
admin: Thanks! Details Apr 09 11:46
admin: Google map api Details Apr 09 11:46
lqj12: cooooooooool Details Apr 08 21:34
Yunhan Huang: 这个功能是如何实现的? Details Apr 08 13:23