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ABSTRACT Quantitative analysis of blood vessel wall structures is important to study atherosclerotic
diseases and assess cardiovascular event risks. To achieve this, accurate identification of vessel luminal and
outer wall contours is needed. Computer-assisted tools exist, but manual preprocessing steps, such as region
of interest identification and/or boundary initialization, are still needed. In addition, prior knowledge of the
ring shape of vessel walls has not been fully explored in designing segmentation methods. In this work,
a fully automated artery localization and vessel wall segmentation system is proposed. A tracklet refinement
algorithmwas adapted to robustly identify the artery of interest from a neural network-based artery centerline
identification architecture. Image patches were extracted from the centerlines and converted in a polar
coordinate system for vessel wall segmentation. The segmentation method used 3D polar information
and overcame problems such as contour discontinuity, complex vessel geometry, and interference from
neighboring vessels. Verified by a large (>32000 images) carotid artery dataset collected frommultiple sites,
the proposed system was shown to better automatically segment the vessel wall than traditional vessel wall
segmentation methods or standard convolutional neural network approaches. In addition, a segmentation
uncertainty score was estimated to effectively identify slices likely to have errors and prompt manual
confirmation of the segmentation. This robust vessel wall segmentation system has applications in different
vascular beds and will facilitate vessel wall feature extraction and cardiovascular risk assessment.

INDEX TERMS Artery detection, artery localization, atherosclerosis, polar conversion, tracklet refinement,
vessel wall segmentation.

I. INTRODUCTION
Atherosclerotic cardiovascular disease is a leading cause of
death worldwide [1]. Angiographic techniques are commonly
used to depict luminal stenosis resulting from atherosclerosis
progression. However, they often under- or over-estimate the
underlying disease burden due to expansive or restrictive arte-
rial wall remodeling [2]. Black-blood vessel wall magnetic
resonance imaging (MRI) has allowed for direct visualiza-
tion of atherosclerotic lesions in major arterial beds [3], [4]
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without ionizing radiation or contrast media. Arterial wall
segmentation in vessel wall MRI provides a quantitative anal-
ysis of atherosclerotic burden, which can be exploited for
monitoring disease progression in serial studies and clinical
trials [5], [6].

Considering the anatomical variations of arteries, MRI
signal complexity, and flow artifacts, most previous stud-
ies, including quantitative analysis of the vessel wall, rely
on manual segmentation. In manual review, inner and outer
boundaries of arterial walls (lumen and outer wall) visible
in the axial planes on each slice of the MR images need to
be drawn on each slice [7], which is tedious and subject to
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reader variability [8]. Unlike brain tumors or larger human
organs, where locating the region of interest for segmentation
is relatively easy, the vessel wall is usually 1 millimeter in
thickness and takes less than 0.1% of space in the image.
In addition, the size of arteries may change along the slices,
and the artery might be tortuous with many bifurcations.
Correct identification of the region containing the artery of
interest is usually needed prior to vessel wall segmentation;
for example, zooming in to the region, including the common
carotid artery (CCA) or internal carotid artery (ICA) for
carotid vessel wall analysis facilitates segmenting the thin
vessel wall region. Semi-automated or automated methods
have been proposed to segment vessel walls, such as using
active contourmodels byYuan et al. [9] andAdams et al. [10],
an active shape model by Underhill et al. [11], or using graph
cut by Arias-Lorza et. al. [12]–[14]. Another category of
methods segment the vessel wall area by classifying pixels
into vessel wall regions and non-vessel wall regions using
machine learning models [15], [16]. Manually locating the
artery of interest is required for most segmentation methods,
but somemethods try to automatically locate arteries by refer-
ring to registered MR angiography, in which lumen areas are
better visualized [17]. In addition, Hough circle detection has
been attempted to detect arterial centers, under the assump-
tion that arteries are circular in shape [18]. These methods
reduce somemanual steps and show reasonable agreement for
images with high vessel wall contrast. However, three major
problems remain for existing methods: 1) extensive human
input is still needed for most methods, including contour
initialization [9], [10], seed point initialization [11]–[13],
[15], [16], and registration of image sequences [17]; 2) feed-
back from the automated segmentation models, for example,
the level of confidence in the segmentation, which might be
useful for clinicians to check problematic slices to ensure the
segmentation quality, is usually not available; and 3) due to
the limited number of annotated samples in a specific vascular
region, the robustness of the algorithm has not been fully
explored in previous studies.

Recently, deep learning-based methods have shown supe-
rior performance in cardiovascular applications when com-
pared to traditional methods, including retinal blood vessel
segmentation [19] and coronary artery segmentation [20].
In our previous works, the convolutional auto-encoder (CAE)
demonstrates a high agreement with manual contours of the
lumen [21] and outer wall [22]. However, several major obsta-
cles exist, preventing our deep learning-based algorithms
from being effectively used: (1) the target artery cannot be
automatically identified in the presence of multiple arteries;
(2) some prior knowledge, for example, vessel wall contours
should be closed rings, is not used (see Figure 1 for a prob-
lematic case); and (3) information from neighboring slices is
not well used to refine the segmentation results.

In this study, we overcame the above challengeswith a two-
step fully automated vessel wall analysis workflow. A local-
ization approach using tracklet refinement was developed

FIGURE 1. Exemplary problems encountered previously in CAE [22].
(a) Original vessel wall image with flow artifacts and external carotid
artery (ECA) co-existing with the ICA. (b) Probability map from prediction.
The ECA is visible in the region of interest for the ICA (the target artery)
vessel wall segmentation, leading to both arteries having a high
probability. (c) Broken vessel wall segmentation due to weak signal in a
portion of the vessel wall region. (d) Human labeling.

to first robustly identify the lumen center of arteries along
image slices to provide regions of interest for the subsequent
vessel wall segmentation. Unlike the commonly used Carte-
sian coordinate-based segmentation methods, we proposed
to transform the ring-shaped vessel wall to a polar coordi-
nate system to ensure the continuity and accuracy of vessel
wall boundaries. From the consistency of predictions from
different rotations, an uncertainty score can be derived to
effectively estimate the segmentation performance.

In summary, the major contributions of this work are in
three areas:

1)We proposed a fully automated vessel wall segmentation
workflow for black blood vessel wall MRI without any man-
ual intervention. The use of an artery localization architecture
to identify artery centerlines before vessel wall segmentation
avoids the step of selecting the region of interests for arteries.
The use of the convolutional neural network (CNN)model for
segmentation does not require wall boundary initialization.

2) We proposed to segment the vessel wall by boundary
regression in the polar coordinate system. We extensively
explored different polar regression architectures and com-
pared them with the state-of-the-art Cartesian segmentation
methods. Polar regression provided unique benefits, includ-
ing better vessel wall continuity and improved segmentation,
which is especially needed in challenging slices near arterial
bifurcations where the artery shape is no longer circular.

3) By predicting boundary coordinates from rotated polar
patches, sub-pixel level segmentation is available. More
importantly, by combining boundary regression results from
rotated patches, our method can also yield uncertainty scores
to inform users of possible mistakes.

The rest of this paper is organized as follows: in Section II,
we give a detailed description of the methodologies contained
in our proposed localization and segmentation system. The
experimental data setup and simulation results are given in
Section III, followed by the Discussion in Section IV. The
conclusion is drawn in Section V.

II. PROPOSED LOCALIZATION AND SEGMENTATION
METHODOLOGIES
The workflow for the proposed localization and segmentation
methodologies is shown in Figure 2.
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FIGURE 2. Workflow for proposed localization and segmentation methodologies.

A. LUMEN CENTER LOCALIZATION
The purpose of the localization task is to automatically iden-
tify the lumen center of each image slice to provide the
region of interest for the subsequent vessel wall segmentation.
Tracking the artery across consecutive images spatially is a
similar task to temporal object tracking in a video. There-
fore, a tracking-by-detection approach was adopted in our
localization scheme, which included three steps: region of
interest identification, lumen center detection, and tracklet
refinement.

For region of interest identification, a Yolo V2 detec-
tor [23] based on CNN was used to predict bounding boxes
(minimum encompassing rectangles covering whole artery
regions) of arteries in each image slice. The original weights
of the Yolo detector were used to further train the model
in artery detection. Yolo V2 was selected because it is time
efficient and generally accurate [23]. Other detectors might
also be suitable for this purpose and we did not optimize this
step for this project.

Accurate patch extraction from the lumen center is impor-
tant for polar conversion. However, the center of bounding
boxes from the Yolo detector may not be the same as the geo-
metric lumen center when the arterial shape is not a perfect
circle (Figure 3B shows an example). Instead, we predicted
centers of the lumen near the bounding boxes using the
following steps. First, a 2D U-net [24] was trained to predict
the minimum distance to the nearest non-lumen area for each
pixel. Then, the predicted minimum distance map was thresh-
olded using Otsu’s method [25] and divided into connected
components based on pixel connectivity. Components having
no overlap with the bounding box were removed, and the
centers of the remaining components were used to represent
each possible lumen. The value of the minimum distance
map at each lumen center was used as the confidence score
for the centers. 2D U-net was selected as a popular model
for image-to-image conversion, and Otsu’s method was used
as a conventional method for thresholding. Other competing
methods may also serve the same purpose.

When no, or multiple, lumen centers were identified
for some slices, a tracking method (tracklet refinement

algorithm) was used to infer the missing centers or remove
centers corresponding to veins/arteries not of interest. First,
a series of closely matching (based on intensities along the
path between centers) neighboring centers were defined as
a short tracklet. All short tracklets formed a collection of
K = {T1,T2, . . . ,Ti. Tracklet Ti with zt,i − zh,i + 1 neigh-
boring centers was represented with head and tail centers
Ti = (hi, t i) = (

[
xh,i, yh,i, zh,i

]
,
[
xt,i, yt,i, zt,i

]
). Short track-

lets were then merged for longer tracklets by a connection
loss L

(
Ti,Tj

)
defined as the feature distance between head

and tail of each pair of tracklets,

L
(
Ti,Tj

)
=

{
∞, zh,i > zh,j∣∣∣∣F (C(t i))− F (C (hj))∣∣∣∣2 , zh,i ≤ zh,j

(1)

C is a function to crop the in-plane image patch of 128∗128 at
the center of h or t. F is a CNN feature extraction network
with 5 convolution layers, 5 max pooling layers, and a fully
connected layer of 64 nodes as the output. Triplet loss [26]
Lt (A,P,N ) was used to train the feature extraction network,
where the anchor and positive patches were extracted from
ground truth lumen centers at the head and tail of the tracklets,
and the negative patch was extracted from the same slice as
the positive patch but at (one of) the center(s) of connected
component(s) not encompassing lumen centers (an example
is shown in Figure 4).

Lt (A,P,N ) = max
(
||F (A)− F (P)||2

− ||F (A)− F (N )||2+ ∝, 0
)
. (2)

∝ is the margin between positive and negative pairs. The
default value of 0.4 was used for ∝ in this study.

Tracklets were pairwise calculated for connection losses,
and the pair (i, j) with mutual minimum loss among all
merge options were connected. mini

{
L
(
Ti,Tj

)
|Tj ∈ K

}
=

minj|L
(
Ti,Tj

)
|Ti ∈ K . During tracklet merging, missing

lumen centers between slice zh,i and zh,j were linearly inter-
polated by Ti,Tj. Center confidence scores within the tracklet
were summed up, and the tracklets with the top score on
each side of the carotid artery were considered as the target

VOLUME 8, 2020 217605



L. Chen et al.: Automated Artery Localization and Vessel Wall Segmentation Using Tracklet Refinement and Polar Conversion

FIGURE 3. A, B: Bounding boxes detected by Yolo V2 at slices 10 and
11 to identify rough artery locations. C, D: Minimum distance map
predictions. E, F: Connected regions showing overlap with bounding
boxes after threshold of C and D. G: Patch from the connected region
center (as lumen centers) of E. H, I: Patches from two connected region
centers from F. J: Lumen centers of all slices form tracklets (x position vs z
position). K: Tracklets after refinement. The longest tracklet (blue) on
each side of the carotid artery is used as the centerline for segmentation.

centerline. An example of using tracklet refinement to find
the centerline when there are multiple centers for connection
is shown in Figure 3.

Image patches P̂[y, x] of h∗w (128∗128 in this study) were
cropped along the centerline and enlarged 4 times (manual
vessel wall review standard) using bilinear interpolation for
subsequent vessel wall segmentation.

B. MOTIVATION FOR USING THE POLAR COORDINATE
SYSTEM FOR VESSEL WALL SEGMENTATION
Vessel walls are typically ring shapes with two contours
in each axial slice, with the lumen contour always inside
the outer wall contour. Two problems exist using traditional
Cartesian based CNN methods for segmentation (Figure 1 as
an example). 1) Complete contours of vessel walls cannot be
continuously segmented if part of the vessel wall does not
have strong enough prediction results. 2) Nearby arteries or
veins are also segmented due to their similar signal patterns.

These two problems can be easily solved if images are con-
verted to a polar coordinate system for boundary regression.
1) Compared with pixel wise segmentation in a 2D Cartesian
space (degree of freedom: 16∗h ∗ w), contour identification
in the polar system only needs to predict the polar boundary
coordinates, which are distances from the lumen center to
N points along the lumen and outer wall contours (degree
of freedom: 2 ∗ N ). The segmentation task becomes easier
after polar conversion. In addition, contour continuity can be
easily ensured as long as the predicted outer wall distance is
larger than the lumen distance for each point. 2) Neighboring
arteries or veins appear very different from the target artery

FIGURE 4. Feature extraction network and triplet loss for identifying pairs
of tracklets to merge. Number of kernels are shown in each convolution
layer.

after polar conversion, and therefore they can be more easily
discriminated by the CNN.

Polar boundary coordinates predicted from the polar image
can be converted back to Cartesian coordinates and the final
segmentation mask can be acquired by filling the region
between two contours.

C. POLAR REGRESSION CNN ARCHITECTURE
The polar image patches P[t, r] with the size of 2h∗ 2w were
converted fromCartesian image patches P̂[y, x] with the polar
center at [2h, 2w], using the polar transformation relation of
P [t, r] = f

(
P̂ [y, x]

)
. The polar conversion equations used

in this study are in the supplementary material.
Considering the patch size, available training sample size,

and the difficulty of the regression task, a CNN architecture
(Polar-Reg) with 14 convolutional layers and 6 max pooling
layers was used for polar regression (architecture is shown
in Figure 5). The last fully connected layer had 2t nodes,
which were the polar boundary coordinates Rl (P), Ro(P) in t
directions. Then the boundary coordinates were converted to
the Cartesian system R̂l,o (y, x) = f −1(Rl,o (P)). The regions
between boundaries R̂l,o (y, x)were filled with 1 as the binary
segmentation mask ˆSM r (P).

The Polar IoU loss [27], an IoU loss [28] in the polar coor-
dinate systemwas used as the loss function for the regression.

Loss = log

∑n
i=1 dmin∑n
i=1 dmax

, (3)

dmin and dmax are the smaller and larger boundary coordinates
along one of the n directions from the ground truth and
prediction.

The Adam optimizer [29] was used to control the learning
rate.
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FIGURE 5. CNN architecture for polar regression. Number of kernels are shown in each convolution layer. Each convolution layer was followed by a batch
normalization layer and a rectified linear unit. The depth channel is not drawn for simplicity. Each rotated polar patch regresses boundary coordinates in
t = 256 directions. The predicted coordinates from different angles were averaged for smoothness, and their standard deviation was used to estimate
boundary consistency, as the segmentation confidence score. Finally, the polar boundary coordinates were converted back to the Cartesian coordinate
system and the regions between lumen and outer wall contours were used as the segmentation result.

To incorporate neighboring slice information, patches cen-
tered at [x, y, z±1] were concatenated in the depth dimension
in the CNN architecture. If slice z±1 did not exist, the current
slice would be repeated. For simplicity, the depth channel is
not drawn in Figure 5.

D. PATCH ROTATION
A polar patch rotation method was proposed for both data
augmentation and prediction combinations.

Data augmentation is needed for better training with lim-
ited samples. Traditional augmentation methods, such as
rotation and offsetting, are not suitable for polar patches.
Considering the boundless property of polar patch along the
angle directions, we proposed to augment polar patches as

P′α [t, r] =

{
P [2 ∗ h− α + t, r] , t < α

P [t − α, r] , t ≥ α,
(4)

where α is a random integer from 0 to 2 ∗ h. Combined with
vertical flipping, 4 ∗ h times samples can be acquired for
training.

During the prediction stage, multiple rotated polar patches
were combined to ensure boundary smoothness. Rotated
patches with αi = i ∗ G, i = 1, 2, . . . , b2 ∗ h/Gc were
generated and their prediction results were averaged to be
the final probability map and boundary coordinates. G is
the predefined step size for predictions (10 was empirically
selected in this study, see supplementary material).

Final lumen and outer wall boundary coordinates from the
regression Bl and Bw were calculated as

Bl,o [t] = Rl,o (P [t]) =
1

2 ∗ h
G

∑
i

Rl,o
(
P′αi [g (t − αi)]

)
.

(5)

where g (x) =
{
x + 2 ∗ h, x < 0

x, x ≥ 0
.

Vessel wall contours in Cartesian coordinate system were

B̂l,o (x, y) = f −1
(
Bl,o (t)

)
. (6)

E. QUANTIFYING THE UNCERTAINTY IN SEGMENTATION
We observed that our vessel wall segmentation, with good
agreement with manual labels, demonstrated clear bound-
aries and a simple ring shape on MR images, and thus the
segmentation neural network reliably generated consistent
vessel wall boundaries from rotated patches with any αi; in
other words, Rl,o

(
P′αi [g (t − αi)]

)
should be constants with

all possible αi.
Based on this, we proposed lumen and wall consistency

scores Cst l,o (P) to quantify segmentation uncertainty.

Cst l,o (P)

= 1−
1

2 ∗ h

∑
t

(
1√
1
12

√
1

2∗ hG

∑
α

(
Rl,o(P′α[t])−Bl,o[t]

2∗w

)2)
.

(7)

Boundary coordinates were normalized between 0 to 1,
and the variation of predictions from different patches was
evaluated by the ratio of the standard deviation of boundaries
predicted from different patches, to the worst case when all
the predictions were random (

√
1/12). The range of consis-

tency was between 0 (random) to 1 (perfectly consistent). The
worst case scenario is unlikely to happen, which means the
score is usually high.

F. ITERATIVE CENTERLINE REFINEMENT FROM
SEGMENTATION
Polar patches used for training were converted from perfect
lumen centers, whichwas not the case for testing data, leading
to inferior segmentations in prediction. Even refined from
the localization module, the centerline can still be further
improved from the center deviations calculated from the pre-
dicted polar boundaries. The center deviations can be reduced
iteratively from the angle of 360◦

2h ∅with the largest differences
of polar coordinates from opposite directions.

∅ = argmax (|Bl [∅]− Bl [∅ + h]|)
1x = cos (Bl [∅]− Bl [∅ + h])
1y = sin (Bl [∅]− Bl [∅ + h])

(8)

By adjusting the x1 = x0+1x, y1 = y0+1y, a new P̂ [y, x]
with a better polar center can be extracted for another round
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of segmentation. The process was iterated until the deviations
were below the imaging resolution or the max iteration was
reached.

III. EXPERIMENTAL DATA SETUP AND RESULTS
A. MR IMAGES
Data were collected following institutional review board
guidelines. Informed consents were obtained from all study
participants.

The carotid dataset included T1-weighted (T1W) carotid
artery images from 954 subjects with recent ischemic stroke
or transient ischemic attack, which were collected from the
CARE-II study from multiple sites [30], and 203 asymp-
tomatic subjects from a clinical trial (NCT00851500) from
the Kowa Research Institute [31], [32].

Detailed imaging parameters are shown in the supplemen-
tary material.

B. HUMAN LABELING
Lumen and outer walls were delineated manually by trained
reviewers with 3+ years’ experience in cardiovascular MR
imaging using a custom-designed software package (CAS-
CADE) [33]. Image slices with poor image quality were
excluded from review and all the labeled slices were also
peer reviewed to ensure labeling quality. Each image slice
was rated with an image quality level of adequate, good,
or excellent. A human reviewer required about one hour to
annotate a single subject’s carotid artery scan.

The CARE-II and Kowa datasets were pooled and ran-
domly divided into 925 subjects (80%; 26008 image slices)
as the training set, 116 subjects (10%; 3215 image slices) as
the validation set, and 116 subjects (10%; 3406 image slices)
as the testing set. The test set was not used in any way until
the model design was finalized.

C. FEASIBILITY ANALYSIS OF POLAR REGRESSION FOR
VESSEL WALL SEGMENTATION
As a proof of concept that vessel wall segmentation by
polar regression is feasible without much loss of accuracy
during the polar conversion, we analyzed the upper limit
of Dice Similarity Coefficient (DSC) [34] between segmen-
tation from converted polar boundary coordinates and the
ground truth segmentation. In addition, DSC with different
choices of t was evaluated. We used t = 256 in our models
with the mean DSC of 0.9630, indicating the loss of informa-
tion by polar conversion was not our concern considering our
current performance in segmentation. More discussions were
presented in the supplementary material.

D. ABLATION STUDY AND COMPARISON METHODS
To evaluate the model complexity on segmentation perfor-
mance, a deeper regression model with Resnet 101 [35] was
evaluated for performance improvements. The model (Polar-
Res-Reg) was built by connecting the last two layers of the

Polar-Reg to the last fully connected layer from a Resnet
trained with initial weights on the ImageNet dataset [36].

To evaluate the contribution of neighboring slices to seg-
mentation improvements, P [t, r] were repeated three times
(Polar-Res-Reg-Single) as the input to train the same segmen-
tation neural network as Polar-Res-Reg.

The proposed Polar-Reg model used polar patches to
regress polar boundary coordinates. To evaluate the contribu-
tions of polar inputs and outputs, we designed the Cart-Reg
model which predicted polar boundary coordinates from
Cartesian patches, and Cart-Cart-Reg model which predicted
Cartesian coordinates from Cartesian patches.

To evaluate the effect of accurate polar centers on the per-
formance of vessel wall segmentation, the Polar-Reg model
was tested directly on bounding box centers (without tracklet
refinement). To evaluate the effectiveness of the iterative cen-
ter adjustment from segmentation, Polar-Reg-Once allowed
only one segmentation per vessel wall.

Cartesian based segmentation methods (existing methods
are usually in this category) were also compared, including
the popular neural network models 3D U-net [24] (previously
adopted in vessel wall segmentation [22]), Mask-RCNN [37]
(Resnet 101 backbone, pretrained on the ImageNet [36]
dataset). These methods were trained and tested using the
same datasets and settings as our polar models.

We also compared the performance with a state-of-the-art
non-CNN vessel wall segmentation method, Optimal front
segmentation (Opfront) [14], which is based on the graph cut
algorithm.

E. EVALUATION METRICS
To better reflect the performance of each module, we first
used the ground truth lumen centers to evaluate the vessel
wall segmentation, thenwe used the lumen center localization
module to generate centerlines for vessel wall segmentation,
and evaluated both the localization and segmentation.

For the localization evaluation, mean absolute dis-
tance (MAD) between predicted lumen centers with ground
truth centers, number of false negatives (no lumen center in
a slice) and false positives (more than one center in a slice)
were calculated before and after the tracklet refinement.

Performance of the segmentation was evaluated by the
DSC, and Degree of Similarity (DoS) [38], both of which
ranged from 0 (mismatch) to 1 (perfect match). Detailed def-
initions are in the supplementary material. DSC > 0.7 indi-
cates excellent agreement [39]. DSC for lumen (DSCInner:
area within the lumen contour), complete vessel (DSCOuter:
area within the outer wall contour) and vessel wall (DSCVW:
area between the lumen and outer wall contours) were evalu-
ated separately. DoS for lumen and outer walls were also eval-
uated separately as DoSLumen, DoSWall. In addition, vascular
features from predicted and ground truth contours were calcu-
lated and compared. Representative and clinically important
vascular features were selected, including max wall thick-
ness, mean wall thickness, lumen area, and wall area. Abso-
lute mean difference and intraclass correlation coefficient
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TABLE 1. Carotid vessel wall segmentation performance compared with other methods.

TABLE 2. Carotid Vessel wall features quantified from segmentation compared with other methods.

between predicted and ground truth vascular features were
calculated.

F. VALIDATION ON CONSISTENCY SCORES
Independent associations between consistency scores and
DSCVW were evaluated using Spearman’s partial rank corre-
lation coefficients. The correlation between a combination of
scores and DSCVW was summarized using R-squared from a
linear model with rank-transformed scores as predictor vari-
ables and DSCVW as the outcome variable. These analyses
were conducted at the slice level, so generalized estimating
equations (GEEs) were used to test associations and com-
pare models while accounting for non-independence between
slices from the same subject. Please also refer to the sup-
plementary material for sensitivity evaluation of consistency
scores.

G. HARDWARE AND SOFTWARE SETUP
Model training and evaluation were performed on worksta-
tions (Intel R©Xeon R©CPU E5-1650 v4 @3.6GHz 6 cores,
64 GB Memory) with an NVIDIA Titan Xp (evaluation) /
V (training) GPU. Tensorflow [40] and Keras were used as
the deep learning platform in this study.

H. PERFORMANCE ON TEST SET
For the segmentation based on ground truth lumen centers,
the superior performance of polar regression models com-
pared with other models in vessel wall segmentation and
vascular feature quantification is shown in TABLE 1 and
TABLE 2. As an example, the segmentation results by each
method on two image slices are shown in Figure 6. Polar
regression models had better performance than the segmenta-
tion models (U-Net, Mask-RCNN), in both lumen and outer
walls, indicating segmentation from boundary regression was
more effective than predicting probability maps. The deeper
regression network (Polar-Res-Reg with 45.0M parameters)
had slightly better performance than the shallower regression
model (Polar-Reg model with 4.6M parameters). Network
architectures with neighboring slices as inputs were better
than single slice inputs. The traditional method (Opfront)
cannot handle vessel walls with weak signal contrasts, and
in most cases cannot ensure ring shapes, so DoS was not
evaluated.

The localization evaluation results are shown in TABLE 5,
after tracklet refinement, 31 (0.9%) FN centers and 211
(6.2%) FP centers from the carotid dataset were all corrected.
The MAD improved from 2.60 to 1.58 pixels.
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FIGURE 6. Examples of vessel wall segmentations at slices near the
carotid bifurcation. Original Cartesian patches were converted to polar
patches (first column) for prediction of boundary coordinates in the polar
coordinate system (middle bottom plot). Coordinates were converted
back to Cartesian system and the region between the two contours was
filled as the segmentation (middle top plot). To better display the
segmentation difference with manual labels (second column), regions
were displayed as blue (TP, correct segmentation region), green
(FP, wrong segmented region), and red (FN, not segmented region).
Segmentation from two Cartesian methods (U-Net [24] and Mask
R-CNN [40]) were compared in the last two columns. Cartesian
segmentations might have segmented the wrong artery (top) or a broken
vessel wall (bottom). For patches with low contrast (bottom),
the consistency scores from the polar model (Polar-Seg- Reg is used as an
example) were relatively low, indicating possible lower segmentation
performance, so manual checking might be required.

The joint localization and segmentation results are shown
in Table 4. Polar regression based on refined centerlines had
better performance thanwhen based directly on bounding box
centers. Polar-Reg achieved the best performance in terms
of MAD and most other segmentation metrics compared to
the other methods. Generally, performance was worse than
predictions based on perfect lumen centers.

TABLE 3. DSC-vw from slices with different image qualities of Carotid
arteries.

The number of slices and the mean DSC-VW in each
of the image quality levels are shown in TABLE 3. Better
image quality led to higher DSC-VW, but even for slices with
only adequate image quality, the polar regression models still
generated contours with DSC-VW over 0.694.

Lastly, the uncertainty of segmentation was quantified
using the consistency scores. Lumen and wall consis-
tency scores had a mean value of 0.99195±0.00813 and

0.98757±0.01222 for the Polar-Reg model. Both consistency
scores, except wall consistency for Polar-Res-Reg, showed
significant contributions in predicting DSCVW, indicating
lower scores were likely to generate a worse segmentation
mask compared with the ground truth. Wall consistency had
strong relations with lumen consistency, so its partial corre-
lation was lower in the regression model. Quantitative results
between models are shown in TABLE 6.

IV. DISCUSSION
In this study, fully automated vessel wall segmentation was
achieved with high accuracy by effectively using a local-
ization model to detect lumen centers using a tracking-
by-detection approach and a regression model to segment
vessel wall in the polar coordinate system. The step of
artery localization avoids the manual procedure to select
the region for artery analysis so that the vessel wall can be
analyzed without human intervention. Traditional vessel wall
segmentation methods are susceptible to poor image qual-
ity, only providing reasonable results when both lumen and
outer wall boundaries have high contrast. Our proposed deep
learning-based method extracted useful boundary informa-
tion from more than 32,000 slices of manually drawn vessel
wall contours with various levels of image quality.We believe
our dataset encompasses a wide spectrum of atherosclerosis
as well as healthy arteries and is capable of training a robust
deep learning model with good generalizability. The use of
the polar regression CNN architecture is an ideal approach,
incorporating the prior knowledge of vessel wall structures
(e.g., ring shape, lumen in the center), and outperforms our
previous deep learning segmentation method [22] based on
the Cartesian coordinate system. The use of multiple CNN
models sequentially (predicting minimum distance map by
CNN, merging tracklets with CNN features, then CNN based
regression on polar patches along the artery centerlines) mim-
ics the human behavior in vessel wall review, thus this CNN
analysis system is not a black box and easily understandable.
However, if the CNN model is trained end-to-end directly
for classification of vascular diseases from images [41], [42],
prediction results are not easily explainable and errors are not
clearly identifiable, especially for challenging images. In this
paper, we focused on determining whether accurate and fully
automated vessel wall analysis based on polar regression
was feasible as a proof-of-concept. The choice of specific
algorithms or models needs to be further explored to fully
optimize vessel wall segmentation performance.

Both consistency scores were shown to provide indepen-
dent and critical information in identifying problematic slices
in segmentation, which can be useful in guiding humans to
examine only the slices with higher likelihoods of possible
errors and ensure high segmentation quality.

The method proposed to segment carotid arteries is also
applicable to other vascular beds. One example was the
popliteal arteries [43].We used a publicly accessible popliteal
artery dataset [44] to test the generalizability of our model on
a large popliteal artery dataset in which there are challenging
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TABLE 4. Joint vessel wall localization and segmentation performance compared with other methods.

TABLE 5. Lumen center localization performance before and after
tracklet refinement.

TABLE 6. Quantitative comparison of carotid segmentation uncertainty
predicted by models.

cases where some vessel wall boundaries are unclear and
vein/branching artery co-exists near the artery of interest.
Comprehensive validation and feasibility assessment of our
method on popliteal vessel wall quantification was discussed
in [45].

There are existing automated tracking-based vessel center-
line extraction methods for coronary arteries from computed
tomography angiography data [46]–[48]. However, due to the
very different images and applications compared with MR
vessel wall image analysis in our study, no comparisons were
made.

The application of deep learning methods in vessel wall
segmentation might have a profound impact on MR vessel
wall image analysis. As a research tool, with accurately
segmented vessel wall areas from an automated method,
quantitative vessel wall features can be extracted to enhance
our understanding of atherosclerosis progression from large
population studies, for which time-consuming manual or

semi-automated methods are not achievable. Clinically, a fast
screening tool can be developed to automatically iden-
tify high-risk patients for further detailed examination in a
time-efficient manner. After choosing a proper threshold for
better sensitivity over specificity, the quantitative vessel wall
features along with the confidence scores can largely reduce
the burden for clinicians by prioritizing patients urgently
requiring medical care and giving initial evaluations for the
carotid scans.

A limitation of the polar methods is the extra calculation
time, mainly for polar conversions, compared with Carte-
sian methods. GPU acceleration for polar conversion may
be attempted in the future. Additionally, only the relatively
straight carotid and popliteal arteries were evaluated in this
study. However, the method has the potential to be adapted
to MRI data of more tortuous arteries (e.g., intracranial
arteries) with the combination of robust artery tracing and
cross-sectional slicing methods [49].

V. CONCLUSION
A deep learning system for vessel wall localization and seg-
mentation has been developed with tracklet refinement and
polar transformation. Compared with traditional methods,
the proposed system avoids human intervention and demon-
strates better performance in accurate segmentation of vessel
wall areas, as well as providing consistency scores to indicate
possible errors. It has the potential to facilitate research on
atherosclerosis and assist radiologists in image review.
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