sudo add-apt-repository ppa:graphics-drivers/ppa sudo apt-get install nvidia-375 sudo reboot
GPU info can be viewed using
nvidia-smi
Download CUDA 8.0
When asked whether to install GPU driver, select No
All the other select yes
Add CUDA to system environment
export PATH=/usr/local/cuda-8.0/bin:$PATH export LD_LIBRARY_PATH=/usr/local/cuda-8.0/lib64:$LD_LIBRARY_PATH
check version
nvcc -V
Download cudnn 6
Extract
tar -xvf cudnn-8.0-linux-x64-v6.0.tgz sudo cp lib* /usr/local/cuda-8.0/lib64/ sudo cp cudnn.h /usr/local/cuda-8.0/include/
Reference: https://www.tensorflow.org/install/install_linux
Install The libcupti-dev library, which is the NVIDIA CUDA Profile Tools Interface. This library provides advanced profiling support.
sudo apt-get install libcupti-dev
Install pip and Virtualenv:
# Ubuntu/Linux 64-bit
sudo apt-get install python-pip python-dev python-virtualenv
Create a Virtualenv environment in the directory ~/tensorflow:
virtualenv --system-site-packages ~/tensorflow
Activate the environment:
source ~/tensorflow/bin/activate # If using bash source ~/tensorflow/bin/activate.csh # If using csh
(tensorflow)$ # Your prompt should change
Now, install TensorFlow just as you would for a regular Pip installation. First select the correct binary to install:
(tensorflow)$ pip install --upgrade tensorflow # for Python 2.7 (tensorflow)$ pip3 install --upgrade tensorflow # for Python 3.n (tensorflow)$ pip install --upgrade tensorflow-gpu # for Python 2.7 and GPU (tensorflow)$ pip3 install --upgrade tensorflow-gpu # for Python 3.n and GPUFinally install TensorFlow:
When you are done using TensorFlow, deactivate the environment.
(tensorflow)$ deactivate
CUDA 9
export PATH=/usr/local/cuda-9.0/bin:$PATH export LD_LIBRARY_PATH=/usr/local/cuda-9.0/lib64:$LD_LIBRARY_PATH
Cudnn 7
CUDA ToolkitLinux x86_64 Driver Version
CUDA 10.1 (10.1.105)>= 418.39
CUDA 10.0 (10.0.130)>= 410.48
CUDA 9.2 (9.2.88)>= 396.26
CUDA 9.1 (9.1.85)>= 390.46
CUDA 9.0 (9.0.76)>= 384.81
CUDA 8.0 (8.0.61 GA2)>= 375.26
CUDA 8.0 (8.0.44)>= 367.48
CUDA 7.5 (7.5.16)>= 352.31
CUDA 7.0 (7.0.28)>= 346.46
From
sudo apt update && sudo apt install gcc
sudo apt update && sudo apt install build-essential
sudo apt update && sudo apt install freeglut3 freeglut3-dev libxi-dev libxmu-dev
sudo apt update && sudo apt install python3-dev python3-pip
sudo pip3 install -U virtualenv
Navigate to NVIDIA’s Driver Download page
sudo sh ./NVIDIA-Linux-X86_64-[YOURVERSION].run
restart and verify
nvidia-smi
Installing CUDA Toolkit 10 via Runfile
Head over to NVIDIA’s CUDA Toolkit Download page
sudo sh cuda_10.[YOURVERSION]_linux.run
Setup the environment variables
sudo nano ~/.bashrc
add at the end
export PATH=/usr/local/cuda-10.0/bin${PATH:+:${PATH}}
export LD_LIBRARY_PATH=/usr/local/cuda-10.0/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}
verify
nvcc -V
test cuda
cd ~/NVIDIA_CUDA-10.0_Samples
make
cd ~/NVIDIA_CUDA-10.0_Samples/bin/x86_64/linux/release
./deviceQuery
Installing NVIDIA cuDNN
download
- cuDNN Runtime Library for Ubuntu18.04 (Deb)
- cuDNN Developer Library for Ubuntu18.04 (Deb)
- cuDNN Code Samples and User Guide for Ubuntu18.04 (Deb)
cd ~/Downloads
sudo dpkg -i libcudnn7_7.4.2.24-1+cuda10.0_amd64.deb
sudo dpkg -i libcudnn7-dev_7.4.2.24-1+cuda10.0_amd64.deb
sudo dpkg -i libcudnn7-doc_7.4.2.24-1+cuda10.0_amd64.deb
verify cudnn
cp -r /usr/src/cudnn_samples_v7/ $HOME
cd $HOME/cudnn_samples_v7/mnistCUDNN
make clean && make
./mnistCUDNN
Installing TensorFlow 1.13
virtualenv --system-site-packages -p python3 ./venv
source ./venv/bin/activate
pip install --upgrade pip
pip install tensorflow-gpu
verify
python -c "from tensorflow.python.client import device_lib; print(device_lib.list_local_devices())"
Note
Cuda 9 requires gcc/g++ 6, the default on Ubuntu 18 (gcc 7) is too high
need to install gcc/g++ 6
sudo apt-get install gcc-6 g++-6 sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-6 10 sudo update-alternatives --install /usr/bin/g++ g++ /usr/bin/g++-6 10 sudo update-alternatives --install /usr/bin/cc cc /usr/bin/gcc 30 sudo update-alternatives --set cc /usr/bin/gcc sudo update-alternatives --set c++ /usr/bin/g++
Install PyTorch
pip install torch torchvision