Weakly Semi-Supervised Detection in Lung Ultrasound Videos
Jiahong Ouyang, Li Chen*, Gary Y. Li, Naveen Balaraju, Shubham Patil, Courosh Mehanian, Sourabh Kulhare, Rachel Millin, Kenton W. Gregory, Cynthia R. Gregory, Meihua Zhu, David O. Kessler, Laurie Malia, Almaz Dessie, Joni Rabiner, Di Coneybeare, Bo Shopsin, Andrew Hersh, Cristian Madar, Jeffrey Shupp, Laura S. Johnson, Jacob Avila, Kristin Dwyer, Peter Weimersheimer, Balasundar Raju, Jochen Kruecker, and Alvin Chen
* corresponding author
Abstract:
Frame-by-frame annotation of bounding boxes by clinical experts is often required to train fully supervised object detection models on medical video data. We propose a method for improving object detection in medical videos through weak supervision from video-level labels. More concretely, we aggregate individual detection predictions into video-level predictions and extend a teacher-student training strategy to provide additional supervision via a video-level loss. We also introduce improvements to the underlying teacher-student framework, including methods to improve the quality of pseudo-labels based on weak supervision and adaptive schemes to optimize knowledge transfer between the student and teacher networks. We apply this approach to the clinically important task of detecting lung consolidations (seen in respiratory infections such as COVID-19 pneumonia) in medical ultrasound videos. Experiments reveal that our framework improves detection accuracy and robustness compared to baseline semi-supervised models, and improves efficiency in data and annotation usage.
Published at The 28th biennial international conference on Information Processing in Medical Imaging, 2023
This is the publication for the work with Jiahong (summer intern) when I serve as her mentor (first as mentor). Congrat to the team (super long author list, again)!