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Thanks for coming to my general exam

• Committee members:
– Co-chairs: Dr. Jenq-Neng Hwang (ECE) and Dr. Chun Yuan (BIOE, Radiology)
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– Members: Dr. Linda Shapiro (ECE, CSE) and Dr. Ming-Ting Sun (ECE)
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Overview

• Background
• Completed work

– Vasculature centerline generation
– Vasculature segmentation

• Future directions
– Automated intracranial artery tracing
– Comprehensive vasculature map generation
– Vascular feature bank construction
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Background: Human vasculature

• A complicated and important system
• Arteries visible from Magnetic Resonance 

Imaging (MRI) techniques
– MR angiography (MRA), MR vessel wall imaging

Image from Wikipedia: Circulatory_system

Intracranial 
arteries

Carotid 
arteries

Popliteal 
arteries

Left: Maximum intensity 
projection of intracranial arteries

Right: One slice of popliteal 
artery pointed by the arrow

Bottom: One slice of carotid 
arteries pointed by the arrow
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Background: atherosclerosis

• Cholesterol accumulates on vessel wall, 
forming atherosclerotic plaque

• Plaque may narrow/block arteries, may also 
burst, causing ischemic stroke

• A systemic disease affecting multiple vascular 
beds

• Quantitative analysis of all human vasculature 
– Monitor vascular health
– Help vascular research

Image from https://www.mayoclinic.org/diseases-conditions/arteriosclerosis-
atherosclerosis/symptoms-causes/syc-20350569

blood
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Aim: comprehensive vasculature analysis

• Comprehensive vasculature analysis needed
– Lumen: identify artery centerlines to extract artery 

structures and blood flow features 
– Outer wall: identify vessel wall contours to extract 

plaque features
– Automated solutions for all human vasculature

• Challenges
– Tiny structure of artery and vessel wall (<1mm) 
– Signal low, contrast weak, artifacts in vascular images
– Limited samples, expensive manual labeling

Lumen (red) and outer wall 
(blue) contours on a slice of 

popliteal vessel wall

Lumen 
region

Vessel 
wall 

region

Lumen 
contour

Outer wall 
contour
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Related research on luminal region analysis

[1] Zhao, et.al, IEEE TMI, 2017 [2] Volkau, et.al, IEEE TMI, 2005
[3] Wright, et.al, NeuroImage, 2013 [4] Marchenko, et al, J of Digital Imaging, 2010

Lumen segmentation only, no 
topological features [1]

Large arteries with good 
contrast only [2]

No radius features 
and limited 

anatomical regions [3]

Long time manual 
processing [4]

• Limited features available
• Limited ability for human correction
• Insufficient automation
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Related research on vessel wall segmentation

• Deformable model
– Active contour models [1,2,3]

• Model fitting
– Active shape model [4]
– Ellipse fitting [5]
– 3D NURBS surface fitting [6]
– Tree model fitting [7]

• Learning-based classification
– Fuzzy clustering [5]
– AdaBoost [8]
– K-nearest neighbors [7]

• Graph-based methods
– Coupled graph cut [9,10,11]

[1] Yuan, et al. Magnetic Resonance Imaging, 1999.
[2] Adams, et al. Proc. SPIE medical imaging, 2002.
[3] Kerwin, et.al. Topics in Magnetic Resonance Imaging, 2007.
[4] Hunter, et.al. J Magn Reson Imaging, 2006.
[5] Adame, et al. Proc. SPIE medical imaging, 2004.
[6] Van't Klooster, et. al. Journal of Magnetic Resonance Imaging, 2012.
[7] Gao, et. al. Medical Physics, 2017.
[8] K Hameeteman, et. al. Physics in medicine and biology, 2013.
[9] Ukwatta, et. al. IEEE Transactions on Medical Imaging, 2013.
[10] Arias-Lorza, et. al. IEEE Transactions on Medical Imaging, 2016.
[11] Petersen, et.al. IEEE Transactions on Medical Imaging, 2019.

• Remaining problems:
• Robustness 
• Automation
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Overview

• Background
• Completed work 

– Vasculature centerline generation
– Vasculature segmentation

• Future directions
– Automated intracranial artery tracing
– Comprehensive vasculature map generation
– Vascular feature bank construction
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Completed work Part 1: Vasculature centerline generation

• Centerline: a list of points along the center of artery (with radius)
• Generate centerline from vascular images in 3D space 

– Extract vascular structure features: length, tortuosity, etc.
– Identify region of interest for detailed analysis: vessel wall segmentation

• Start with relatively straight arteries

MR scan of knee with relatively straight popliteal 
artery (displayed in a reconstructed tube)
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Centerline generation for relatively straight arteries 

• Time dimension in video equivalent to depth dimension in 3D medical image
• Centerline generation: tracking by detection

– Detection of bounding boxes from each axial image slice
– Combining detections using tracklet refinement algorithm

Tracking cars (in bounding boxes) from traffic 
videos in NVIDIA AI City Challenge [1]

Finding popliteal artery 
from 3D vascular images

[1] Tang, et. al, CVPR, 2018

Similarity of artery 
region among axial slices

Sliding through time
Sliding through 

axial slices
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Artery localization: detection + tracklet refinement 

• Detection of arteries in each slice using Yolo V2 [1] detector
– Predict objects in bounding boxes with a confidence score
– Pretrained weights from natural images
– Further tuned on vascular images using vascular labels

• Problems
– Noise detections 
– Missing detections

• Solution
– Use detections from neighboring slices

[1] Redmon, et.al, CVPR, 2017.

Example bounding boxes (with confidence 
score) on a slice of carotid artery image

Artery 
(0.53)Artery 

(0.88) Artery 
(0.65)

Noise (0.42)

Bounding boxes: minimum encompassing 
rectangle around the artery 
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Artery localization: detection + tracklet refinement 

• Tracklet generation: boxes in neighboring slices with Intersection over Union 
(IoU) > 0.5

Noise 
detections

Missing 
detections

x position of each box

Sl
ic
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nu

m
be

r 
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h 
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x

Tail box       ) in tracklet tracklet 

tracklet 

Head box       ) in tracklet 

Combined loss , ଵ   ଶ

  ଷ    

Weights of ଵ,ଶ,ଷ decided from validation set

3D coordinates of box center, 
: width and height of box

: confidence score

Bounding 
box 

detection

Tracklet 
generation

Loss 
calculation
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Artery localization: detection + tracklet refinement 

Noise 
detections

Missing 
detections

x position of each box

Sl
ic
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nu
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of
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x

Merge tracklet and if , ,

for 
: number of tracklets

tracklet 

tracklet

Bounding 
box 

detection

Tracklet 
generation

Loss 
calculation

Tracklet 
merging

Tracklet 
removal

Tracklet 
smoothing

Remove tracklet if
ଵ

ெ ெ below a 

threshold 
: number of boxes in the tracklet 

tracklet

Smooth remaining tracklets, using a median filter and a mean filter

x position of each box
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Refined tracklets
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Tracklet refinement results

Dataset with 
#slices

Mean IoU Miss detection False detection

Carotid
N=3406

Before refinement 0.779 5.8% 1.0%

After refinement 0.798 4.3% 0.0%

Popliteal
N=588

Before refinement 0.783 0.0% 6.6%

After refinement 0.861 0.0% 0.0%
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Centerline generation results

Bounding boxes along popliteal artery
(76 slices, 1.5mm thickness)

Bounding boxes along carotid artery 
(16 slices, 2mm thickness)
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Completed work Part 2: Vessel wall segmentation 

• A novel vessel wall segmentation algorithm
– Polar segmentation [1] to generate vessel wall contours for vessel wall thickness 

measurements

• Clinical applications using vascular segmentation
– Automated vessel wall analysis for popliteal arteries [2]
– Fast MR screening system for carotid lesion detection [3]

[1] Chen, et. al, submitted to IEEE Trans on Med Img, Under review
[2] Chen, et. al, submitted to Magn Reson In Medicine, Under review 
[3] Chen, et. al, submitted to Scientific Reports, Under review 
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Metrics for evaluating segmentation performance

• Dice Similarity Coefficient (DSC) [1]

– A is the ground truth, B is the segmentation

– Higher better, range from 0-1
– DSC>0.7 considered excellent

[1] Dice, et. al, Ecology, 1945. 
[2] Angelie, et. al, Invest. Radiol, 2007. 

A B
A 
∩
B

Illustration of DSC

DSC=

2*

A B+
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Metrics for evaluating segmentation performance

• Degree of Similarity (DoS) [1]

∑ (ௗ)
ಿ
సబ

ே 

– N: sample pair of points on contours
– T: distance error allowed in the prediction 
– d: distance of each pair of points
– Higher better, range from 0-1

[1] Angelie, et. al, Invest. Radiol, 2007. 
[2] Van't Klooster, et. al, J Mag Res Img, 2012.

Example of DoS =0.73. Solid line: ground 
truth, grey band T=0.27 mm margin, dashed 
line: prediction contour. 73% of the solid line 
coincides with the dashed line. [2]
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Sample slices with vessel wall segmentation model  [1]

Segmentation using Cartesian convolutional neural network (CNN)

• Convolutional autoencoder (CAE) 
works well for normal vessel walls with 
regular shapes (DSC: 0.86) [1]

• Problems:
– Neighboring arteries will also be 

segmented.
– Closed contours are not ensured. 
– Region of interest need to be manually 

selected.
– Feedback from segmentation is 

unavailable.

[1] Chen, et. al, ISMRM, 2018 

Original 
Image

Cartesian 
Segmentation

DSC = 
0.549

DSC = 
0.448

Manual 
label

Segment 
both vessel 

walls

Broken 
contours

Examples for challenging slices for vessel wall 
segmentation using Cartesian convolutional 

neural network with poor performance

External carotid 
artery (ECA)

Internal carotid 
artery (ICA)
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Solution: Segment vessel wall in polar coordinate system

• Benefits in polar coordinate system 
– Neighboring arteries (ECA) are quite different from the artery of interest (ICA).
– Contours are represented as two vertical lines, easy to ensure continuity

Cartesian patch Polar patch Polar segmentation Cartesian segmentation

Polar 
conversion

Polar 
segmentation

Inverse polar 
conversion

ECA

ECA

ICA

ICA

x

y

radius

ro
ta

tio
n
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Polar segmentation system

Original 
image

Lumen 
detection

Tracklet 
refinement

Vessel wall 
extraction

Polar 
conversion

Vessel wall 
segmentation

Cartesian 
conversion

Localization Segmentation

Carotid image as example, but is a generic system for vessel wall segmentation
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Polar segmentation: Polar-Seg-Reg

Three neighboring 
slices concatenated

Sigmoid
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Polar segmentation: Polar-Reg
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Polar segmentation: Polar-Res-Reg

[1] He, et. al, arXiv, 2015
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Polar segmentation: Polar-Seg

[1] Kass, et. al, International Journal of Computer Vision, 1988
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Polar segmentation with rotated patches
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Segmentation uncertainty scores
• Segmentation confidence

1. Probability image (0-1) from output 1: 
2. Binary fill within contours from output 2: 
3. Sum of probability inside vessel wall contours: 

௧

4. Sum of probability map outside vessel wall contours: 
௧

5. Pixels number inside vessel wall contours: ௧

6. Segmentation Confidence: 
௧ ௧

௧

– Boundary sharpness evaluation. Up to 1, no lower 
limit. Higher value more confidence.

Example for calculating the segmentation 
confidence. Intuitively it is reflecting the 

sharpness of boundaries.
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Segmentation uncertainty scores

• Lumen and wall boundary consistency
1. Lumen/Wall contours from rotated patch at 

polar angle from output 2:  

2. Standard deviation of contour predictions at angle 
: ௧ ଵ,ଶ… ), ௧ ଵ,ଶ,… )

3. Normalize to the worst case when all predictions 
are random ௧ , ௧

4. One minus mean of all boundary points 


ଵ

 ௧

௧ , ௐ

ଵ

 ௧

௧

– Consistency for predictions from rotated patches. 
Range from 0-1. Higher value more consistency

Example of consistency at angle 𝑡 = 128 (red 
line) with 3 rotations 𝑖 = 0,80,160

𝐿 128 = 0.226
𝑊 128 = 0.292

𝐿଼ 128 = 0.223
𝑊଼ 128 = 0.289

𝐿ଵ 128 = 0.230
𝑊ଵ 128 = 0.295

𝐵𝐿ଵଶ଼ = 𝑆𝐷(0.266,0.223,0.230)
𝐵𝑊ଵଶ଼ = 𝑆𝐷(0.292,0.289,0.295)
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Validation of uncertainty scores

• Uncertainty scores correlates with DSC for vessel wall
• With added noise, both DSC for vessel wall and uncertainty scores decrease

Decreased DSCVW and uncertainty scores 
with added noise

Segmentation confidence with DSCVW

from the Polar-Seg CNN architecture
Contour consistency with DSCVW

from the Polar-Reg CNN architecture

Correlation coefficient 0.552 (p<1e-5)

Partial correlation coefficient: Lumen 
0.132 (p<1e-5) Wall 0.047(p=0.045)
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Segmentation results

Segmentation Confidence: -0.15
Lumen consistency: 0.98210
Wall consistency: 0.98231

[1] U-Net: Ronneberger, et. al, arXiv, 2015. [2] Mask-RCNN:  He, et. al, ICCV, 2017. 

Blue: True positive
Red: False negative
Green: False positive
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Segmentation results

Segmentation Confidence: 0.17
Lumen consistency: 0.98762
Wall consistency: 0.98314

[1] U-Net: Ronneberger, et. al, arXiv, 2015. [2] Mask-RCNN:  He, et. al, ICCV, 2017. 

Blue: True positive
Red: False negative
Green: False positive
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Comparison on segmentation quality (#slices = 3406)

Model DSCVW DSCINNE

R DSCOuter DoSLumen DoSWall # failed 
segmentation

Processing 
time (s)

# 
paramete

rs in 
network

Polar-Res-Reg 0.860 0.961 0.962 0.921 0.864 0 0.757±0.072 44,989,224

Polar-Reg 0.848 0.957 0.959 0.907 0.843 0 0.738±0.058 5,642,016

Polar-Seg-Reg 0.852 0.958 0.959 0.912 0.840 0 1.264±0.066 7,386,914

Polar-Seg 0.811 0.942 0.945 0.866 0.747 0 0.886±0.059 4,095,682

Mask R-CNN [1] 0.792 0.940 0.940 0.654 0.565 81 0.138±0.027 63,733,406

Cartesian U-Net 
[2]

0.774 0.922 0.941 0.647 0.517 194 0.103±0.032 4,094,817

[1] He, et. al, ICCV, 2017. [2] Ronneberger, et. al, arXiv, 2015. [3] Petersen, et.al, Trans on Medical imaging, 2019.

DSC: Dice Similarity Coefficient, DoS: Degree of Similarity, higher better 
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Comparison on vascular feature accuracy

Model
Max Wall Thickness Mean Wall Thickness Lumen Area Wall Area

MAD ICC (CI) MAD ICC (CI) MAD ICC (CI) MAD ICC (CI)

Polar-Res-
Reg

0.890
0.896 (0.887-

0.904)
0.484

0.886 (0.878-
0.893)

25.715
0.985 (0.984-

0.986)
40.404

0.984 (0.983-
0.985)

Polar-Reg 0.964
0.874 (0.864-

0.883)
0.521

0.870 (0.862-
0.878)

28.439
0.981 (0.979-

0.982)
42.703

0.981 (0.979-
0.983)

Polar-Reg-
Seg

0.916
0.893 (0.886-

0.900)
0.507

0.879 (0.871-
0.887)

27.221
0.983 (0.982-

0.984)
43.625

0.983 (0.982-
0.984)

Polar-Seg 1.353
0.760 (0.717-

0.794)
0.692

0.762 (0.644-
0.832)

31.338
0.965 (0.963-

0.968)
59.100

0.971 (0.961-
0.978)

Mask R-
CNN [1]

1.264
0.653 (0.632-

0.672)
0.701

0.509 (0.473-
0.543)

32.171
0.942 (0.938-

0.945)
62.567

0.907 (0.885-
0.924)

Cartesian 
U-Net [2]

1.071
0.810 (0.798-

0.822)
0.565

0.808 (0.728-
0.859)

45.065
0.935 (0.923-

0.945)
52.460

0.949 (0.945-
0.952)

MAD: mean absolute difference, lower better. 
ICC (CI): intraclass correlation coefficient (with 95% confidence interval), higher better.

[1] He, et. al, ICCV, 2017. [2] Ronneberger, et. al, arXiv, 2015. 
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Application 1: Automated popliteal vessel wall analysis

• FRAPPE (fully automated and robust analysis technique for popliteal artery 
evaluation): 
– Locate popliteal artery, segment vessel wall, and quantify vessel wall features

• Transfer from carotid model
– Only 25 scans labeled as the training set

• Successfully processed 48,716 knee scans, 3,490,998 slices, 70 years for 
manual review
– Qualitative check 0.88% failure. Quantitative check DSC of 0.79.

• Useful features (mean wall thickness, etc) extracted for clinical research
• Open dataset 

[1] Padua, et. al, MAGNETOM Flash, 2011.
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Example slices
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Application 2: Fast MR screening system for carotid lesion

• LATTE for Carotid 
atherosclerotic lesion 
screening
– Fast scan + Automated 

vessel wall analysis
– Highlight artery segments 

with early/advanced lesions

• Advance lesion classification
– Sensitivity: 0.924
– Specificity: 0.919

Workflow of LATTE (Lesion Assessment 
Through Tracklet Evaluation )

[1] Balu, et.al, Magn. Reson. Med, 2011. 
[2] Jiang, et.al, SPIE Medical Imaging, 2020.

[1] [2] 7
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Summary for completed work

• Achievement: A robust solution for vessel wall analysis
– Automated artery centerline generation + vessel wall segmentation
– From development to applications

• Innovations
– Tracking by detection approach on 3D vascular images
– Polar segmentation methods 
– Segmentation uncertainty scores 

• Technically and clinically useful
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Overview

• Background
• Completed work

– Vasculature centerline generation
– Vasculature segmentation

• Future directions
– Automated intracranial artery tracing
– Comprehensive vasculature map generation
– Vascular feature bank construction



40

Direction 1: Automated intracranial artery tracing

• Problems
– Intracranial arteries are complicated and tortuous
– Automated tracing is challenging

• Proposal
– Extend the tracklet approach for intracranial artery 

tracing
– Supervised learning from 1,000+ human corrected 

intracranial artery traces by iCafe[1]

[1] Chen, et. al, Magn Reson Med, 2018. [2] Chen, et. al, IEEE BIBM, 2017. [3] Chen, et.al, MICCAI CVII-STENT Workshop, 2019

Lumen 
segmentation 

[2]

Tracklet 
generation

Tracklet 
merging/removal

Artery 
refinement [3]

Feature 
extraction [1]

MR scan of brain with complicated and 
tortuous intracranial arteries (displayed in 

reconstructed tubes)
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Intracranial artery centerline labeling tool: iCafe [1]

• iCafe: an interactive tool to label tortuous arteries
– Each artery: centerline, with various radius and 

certain anatomical type
– Tracing by open-curve active contour algorithm [2]
– Manual editing to correct mistakes

• Feature extraction
– Structural and flow features of arteries: length, 

tortuosity, mean intensity, etc.
– Reproducibility validated [3]

[1] Chen, et. al, Magn Reson Med, 2018
[2] Wang, et.al. Neuroinformatics, 2011
[3] Chen, et. al, Magn Reson Img, 2018

User interface of iCafe
(implemented in C++ with ~60k lines 

of codes)
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Segment luminal area with patch-based CNN

• Y-net: Patch based segmentation to better use similarity between arteries
• Training labels from corrected iCafe traces
• DSC of 0.83 on testing set

3D MRA with traces 
from iCafe

Ground truth 
segmentation

Y-net segmentation

From Chen, et. al, IEEE BIBM, 2017 
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Multiplanar reformation (MPR) on artery refinement

• MPR by straightening arteries using 
interpolation for better visualization

• Easier to correct mistake by incorporating 
global information

• In MPR view, optimization on 
– Centerline positions
– Lumen radii 
– Centerline deviations

MPR images for TOF before and 
after refinement

Centerline deviations (red arrows)
have been corrected

Original MIP of TOF with 
selected artery in blue

From Chen, et.al, MICCAI CVII-STENT Workshop, 2019

MPR 
generation

Refinement
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Direction 2: Comprehensive vasculature map generation

Comprehensive 
vasculature map 

Multiple 
vascular 
features

Multiple 
vascular 

beds
Multiple 

timepoints

Image 
analysis 

technique

Feature 
extraction 
technique

Feature 
visualization 
technique

Multiplex 
supporting 
techniques

Multiplex 
analysis 
targets
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Comprehensive features of cerebral vasculature
• Topology and blood flow features from 

generated centerline [1]
• Artery radius feature from lumen 

segmentation [2]
• Plaque burdens features from vessel wall 

segmentation [3]
• Plaque/stenosis features from vascular 

disease detection models [4]
• Plaque risks feature from plaque component 

and signal analysis [5]
• Longitudinal changes of features

Intracranial arteries with centerline
and radius/ lumen segmentation
and outer wall segmentation

and detected plaque/stenosis locations
and plaque components
and plaque signal pattern
and longitudinal changes

[1] Chen, et. al, Magn Reson Med, 2018. [2] Chen, et. al, IEEE BIBM, 2017. 
[3] Chen, et. al, submitted to IEEE Trans on Med Img, Under review.
[4] Han, et.al, [5] Li, et.al, submitted to ISMRM 2020, under review.  

iCafe visualization of multiplex features
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Direction 3: Vascular feature bank construction

• With large amount of vascular features and clinical data of patients
• Build a vascular feature bank to

– Manage features
– Understand features
– Utilize features
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Direction 3: Vascular feature bank construction: manage

Intracranial arteries

Carotid arteries

Popliteal arteries

Feature 
extraction

• Intracranial vascular length: 
2520 mm

• Carotid max wall 
thickness: 2.1 mm

• Popliteal number of 
possible stenosis: 2

• CNN features from 
embeddings

• …

Patient 1

Features

Clinical 
outcomes

Patient i

Features

Clinical 
outcomes

Patient N

Features

Clinical 
outcomes

Vascular feature bank

Vascular 
Scans

Demographic information 
collection, lab tests

Diagnosis

• Age, gender, weight, smoking, family 
history of vascular disease…

• Blood pressure, hyperlipidemia, 
high/low-density lipoprotein

• Disease occurrence, progression 
pattern, treatment effects

Image from 
www.123rf.com

Patient i

Save

… …



48

Direction 3: Vascular feature bank construction: Understand

Patient 1

Features

Clinical 
outcomes

Patient i

Features

Clinical 
outcomes

Patient N

Features

Clinical 
outcomes

Vascular feature bank
• Clustering algorithm to discover patterns 

from features of population
– Explore the clinical implication of clusters.
– Which features are correlated?

• Explore the relation between features and 
clinical outcomes
– Whether patients in certain cluster are likely 

to have for certain vascular disease?
– Construct a vascular risk score to assess 

vascular health.

… …
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Subject i

Clinical 
outcomes

Subject j

Clinical 
outcomes

Direction 3: Vascular feature bank construction: utilize

Intracranial arteries

Imaging 
features

Patient 1

Features

Clinical 
outcomes

Patient i

Features

Clinical 
outcomes

Patient j

Features

Clinical 
outcomes

Patient N

Features

Clinical 
outcomes

Vascular feature bank

Vascular 
Scans

Demographic information 
collection, lab tests

Diagnosis with 
references

Image from 
www.123rf.com

New Patient

Retrieve 
subjects 

with 
similar 

featuresNon-imaging 
features

Subjects in feature 
bank with closest 
vascular feature

… …
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Feature map generation for plaque identification

From Chen, et.al, ISMRM, 2020 (under review)

①

②

④

③

Feature embedding after metric learning 
(color painted from ground truth)

Patch ①
Predicted plaque 
probability: 0.00
Labeled as Normal 
artery

Patch ②
Predicted plaque 
probability: 0.75
Labeled as Plaque

Patch ③
Predicted plaque 
probability: 0.75
Labeled as Plaque

Patch ④
Predicted plaque 
probability: 0.23
Labeled as Plaque

Patch Segmentation Embedding
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Summary for future directions

• Automated -> Fast and applicable to large population 
• Comprehensive -> Comprehensive vascular features analysis, extraction 

and visualization
• Informative -> Understand vascular disease pattern & Deliver more precise 

medical care
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Conclusions

• Goal:
– Automated construction of comprehensive vascular map for vascular assessment

• Innovative achievements:
– A centerline generation solution for all vasculature 
– Polar segmentation architecture for robust vessel wall segmentation

• Future directions:
– Automated, comprehensive, and informative vascular feature extraction 

• Significances:
– Novel imaging features as imaging biomarkers for vascular research
– Clinically applicable workflow to assist clinicians to provide better health care
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Related Journal Publications

iCafe trilogy: development → validation → application
1. Li Chen, et. al, Jenq Neng Hwang, Chun Yuan. Development of a quantitative intracranial vascular 

features extraction tool on 3D MRA using semiautomated open curve active contour vessel tracing. 
Magnetic resonance in medicine (IF:3.9), 2018, 79 (6), Pages 3229-3238. DOI: 10.1002/mrm.26961. 
Editor’s pick.

2. Li Chen, et. al, Jenq-Neng Hwang, Chun Yuan. Quantification of morphometry and intensity 
features of intracranial arteries from 3D TOF MRA using the intracranial artery feature extraction 
(iCafe): A reproducibility study. Magnetic Resonance Imaging (IF:2.1), 2019, 57 (April 2019), Pages 
293-302. DOI: 10.1016/j.mri.2018.12.007

3. Li Chen, et. al, Jenq-Neng Hwang, Chun Yuan. Quantitative Assessment of the Intracranial 
Vasculature in an Older Adult Population using iCafe (intraCranial Artery Feature Extraction). 
Neurobiology of Aging (IF:4.4), 2019, 79 (July 2019), Pages 59-65. DOI: 
10.1016/j.neurobiolaging.2019.02.027
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Related Journal Publications

Vessel wall analysis trilogy: segmentation → quantification →
detection
4. Li Chen, et. al, Jenq Neng Hwang, Chun Yuan. Automated Artery Localization and Vessel Wall 

Segmentation of Magnetic Resonance Vessel Wall Images using Tracklet Refinement and Polar 
Conversion. (under review)

5. Li Chen, et. al, Jenq Neng Hwang, Chun Yuan. Fully automated and Robust Vessel Wall Feature 
Extraction from Standardized Knee MRI. (under review)

6. Li Chen, et. al, Jenq Neng Hwang, Chun Yuan. Carotid Artery Atherosclerotic Lesion Detection 
using an AI based Fully automated Workflow Based on 3D MRI. (under review)

Centerline refinement
7.    Li Chen, et. al, Jenq Neng Hwang, Chun Yuan. Automated Cerebral Vascular Measurements 
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