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Overview

* Background
* Completed work
— Vasculature centerline generation
— Vasculature segmentation
* Future directions
— Automated intracranial artery tracing
— Comprehensive vasculature map generation
— Vascular feature bank construction
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Background: atherosclerosis

* Cholesterol accumulates on vessel wall,
forming atherosclerotic plaque

* Plague may narrow/block arteries, may also
burst, causing ischemic stroke

* A systemic disease affecting multiple vascular
beds

* Quantitative analysis of all human vasculature

— Monitor vascular health
— Help vascular research

Image from https://www.mayoclinic.org/diseases-conditions/arteriosclerosis-
atherosclerosis/symptoms-causes/syc-20350569

Artery

Plaques form in lining of artery

Plague ruptures

Blood clot forms,
limiting blood flow
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Aim: comprehensive vasculature analysis

» Comprehensive vasculature analysis needed

— Lumen: identify artery centerlines to extract artery
structures and blood flow features

— Outer wall: identify vessel wall contours to extract . Lumen
plaque features region

— Automated solutions for all human vasculature

e Challenges

— Tiny structure of artery and vessel wall (< mm)

) ) ) . Lumen (red) and outer wall
— Signal low, contrast weak, artifacts in vascular images (blue) contours on a slice of

popliteal vessel wall

— Limited samples, expensive manual labeling
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Related research on luminal region analysis

 Limited features available
* Limited ability for human correction

* |nsufficient automation

Lumen segmentation only, no Large arteries with good No radius features Long time manual

topological features [1] contrast only [2] and limited processing [4]

[1] Zhao, etal, IEEE TMI, 2017 [2] Volkau, et.al, IEEE TMI, 2005 anatomical regions [3]

[3] Wright, et.al, Neurolmage, 2013 [4] Marchenko, et al, ] of Digital Imaging, 2010
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Related research on vessel wall segmentation

e Deformable model

— Active contour models [1,2,3]

* Model fitting
— Active shape model [4]
— Ellipse fitting [5]
— 3D NURBS surface fitting [6]
— Tree model fitting [7]

* Learning-based classification
— Fuzzy clustering [5]
— AdaBoost [8]
— K-nearest neighbors [7]
* Graph-based methods
— Coupled graph cut [9,10,11]

* Remaining problems:
* Robustness
* Automation

[1]Yuan, et al. Magnetic Resonance Imaging, 1999.

[2] Adams, et al. Proc. SPIE medical imaging, 2002.

[3] Kerwin, et.al. Topics in Magnetic Resonance Imaging, 2007.

[4] Hunter, et.al. | Magn Reson Imaging, 2006.

[5] Adame, et al. Proc. SPIE medical imaging, 2004.

[6] Van't Klooster, et. al. Journal of Magnetic Resonance Imaging, 2012.
[7] Gao, et. al. Medical Physics, 2017.

[8] K Hameeteman, et. al. Physics in medicine and biology, 201 3.
[9] Ukwatta, et. al. IEEE Transactions on Medical Imaging, 201 3.
[10] Arias-Lorza, et. al. IEEE Transactions on Medical Imaging, 201 6.
[I 1] Petersen, et.al. IEEE Transactions on Medical Imaging, 2019.
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Overview

* Background
* Completed work
— Vasculature centerline generation
— Vasculature segmentation
* Future directions
— Automated intracranial artery tracing
— Comprehensive vasculature map generation
— Vascular feature bank construction
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Completed work Part |: Vasculature centerline generation

* Centerline: a list of points along the center of artery (with radius)

* Generate centerline from vascular images in 3D space
— Extract vascular structure features: length, tortuosity, etc.
— ldentify region of interest for detailed analysis: vessel wall segmentation

 Start with relatively straight arteries

MR scan of knee with relatively straight popliteal
artery (displayed in a reconstructed tube)
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Centerline generation for relatively straight arteries

* Time dimension in video equivalent to depth dimension in 3D medical image
* Centerline generation: tracking by detection

— Detection of bounding boxes from each axial image slice
— Combining detections using tracklet refinement algorithm

Sliding through
axial slices

Popliteal artery shown in knee scan

Tracking cars (in bounding boxes) from traffic
videos in NVIDIA Al City Challenge [I]

Similarity of artery
region among axial slices 2 B

Finding popliteal artery
from 3D vascular images

Th ial sli f
[I] Tang, et.al, CVPR,2018 ree axial slices of |

popliteal arteries
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Artery localization: detection

* Detection of arteries in each slice using Yolo V2 [|] detector
— Predict objects in bounding boxes with a confidence score
— Pretrained weights from natural images
— Further tuned on vascular images using vascular labels

* Problems
— Noise detections
— Missing detections

e Solution

— Use detections from neighboring slices

Example bounding boxes (with confidence
score) on a slice of carotid artery image

Bounding boxes: minimum encompassing

[1] Redmon, etal, CVPR, 2017 rectangle around the artery
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Artery localization: tracklet refinement

Bounding

Tracklet Loss

box X
generation

detection

calculation

* Tracklet generation: boxes in neighboring slices with Intersection over Union

(loU) > 0.5 .

traccet i Tail box TBL = (.X'l',yi, w;, hi,Zi, Ci) in tracklet i

§ 340 Missi.ng \‘ Head box HB] = (x],y], Wj’ h], Zj’ C]) in traCkIetj

 :o{detections .

3 _ Noise x,Y,Z: 3D coordinates of box center,

; - s detections W, h: Wldth and helght Of bOX

5 / c: confidence score

c 420 4

R . S N Combined loss L; ; = a; - max(0,z; — z;) — a, -

x position of each box ] loU(TB: HB: a- * (lw;: — w: h: — h:

tracklet] ( L ]) + 3 (l L ]l + | l ]D

Weights of a, , ; decided from validation set |,
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Artery localization: detection + tracklet refinement

Bounding

Tracklet Loss Tracklet Tracklet Tracklet

box ) ,
generation calculation

detection

merging removal smoothing

tracklet i . e .
Refined tracklets Merge tracklet i and j if min(Ly ;) = min(L; )
53‘“]' fOI"k —_ 1,2,..N
= 0] N: number of tracklets
--g 350 1
8 ol tracklet r
€
£ L1
g R Remove tracklet r if HZ v Cr below a
D 410 ® Trackletl
00 250 300 30 400 450 500 550 th res h o I d
x position of each box . . :
tracklet j M: number of boxes in the tracklet r

Smooth remaining tracklets, using a median filter and a mean filter
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Tracklet refinement results

Dataset with

Hslices

Carotid
N=3406

Popliteal
N=588

Before refinement

After refinement

Before refinement

After refinement

0.779

0.798

0.783

0.861

Miss detection

5.8%

4.3%

0.0%

0.0%

False detection

1.0%

0.0%

6.6%

0.0%
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Centerline generation results

Bounding boxes along carotid artery Bounding boxes along popliteal artery
(16 slices,2mm thickness) (76 slices, |.5mm thickness)
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Completed work Part 2: Vessel wall segmentation

* A novel vessel wall segmentation algorithm

— Polar segmentation [1] to generate vessel wall contours for vessel wall thickness
measurements

 Clinical applications using vascular segmentation

— Automated vessel wall analysis for popliteal arteries [2]
— Fast MR screening system for carotid lesion detection [3]

[I] Chen, et. al, submitted to IEEE Trans on Med Img, Under review
[2] Chen, et. al, submitted to Magn Reson In Medicine, Under review
[3] Chen, et. al, submitted to Scientific Reports, Under review



UNIVERSITY of WASHINGTON

Metrics for evaluating segmentation performance

* Dice Similarity Coefficient (DSC) [1]

_psC = 24nB)
A+B

— A'is the ground truth, B is the segmentation
— Higher better, range from 0O-|
— DSC>0.7 considered excellent

[1] Dice, et. al, Ecology, 1945.
[2] Angelie, et. al, Invest. Radiol, 2007.

lllustration of DSC
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Metrics for evaluating segmentation performance

* Degree of Similarity (DoS) [I]

Lifd<T
0,ifd>T
— N: sample pair of points on contours

— T: distance error allowed in the prediction
— d: distance of each pair of points

N
- DoS = Zmo}:"(d) where p,(d) = {

— Higher better, range from O-|

[1] Angelie, et. al, Invest. Radiol, 2007.
[2] Van't Klooster, et. al, ] Mag Res Img, 2012.

Example of DoS =0.73. SoIiJIine: ground
truth, grey band T=0.27 mm margin, dashed
line: prediction contour. 73% of the solid line
coincides with the dashed line. [2]
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Segmentation using Cartesian convolutional neural network (CNN)

* Convolutional autoencoder (CAE)
works well for normal vessel walls with Origiffal,

regular shapes (DSC: 0.86) [1]
* Problems:

Gartestapebil

image ty image
o

M'ayﬁud Labeled DSC

image image

/ Ex'ternal carotid
artery (ECA) )
%A

. ) ) ] both vessel | %“ B
— Neighboring arteries will also be walls caro | et cari )
segmented. bifurca o R N L
— Closed contours are not ensured. Brokeninte

contou r%arr

— Region of interest need to be manually v
SampErs - c odel [I]

selected.
. . Examples for challenging slices for vessel wall
— Feedback from segmentation is segmentation using Cartesian convolutional
unavailable. neural network with poor performance

[I] Chen, et.al,ISMRM, 2018 20
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Solution: Segment vessel wall in polar coordinate system

* Benefits in polar coordinate system
— Neighboring arteries (ECA) are quite different from the artery of interest (ICA).
— Contours are represented as two vertical lines, easy to ensure continuity

Polar Polar Inverse polar
conversion segmentation conversion

.'7

radius
Cartesian patch Polar patch Polar segmentation Cartesian segmentation

rotationl

21
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Polar segmentation system

Localization Segmentation

Orriginal Lumen Tracklet Vessel wall Polar Vessel wall Cartesian
image detection refinement (S -Tadlely conversion segmentation conversion

0
]
X
<]

-1

o
5]
o
@

-1
E
=
c
o

=

v

.
Ll ®

175 200 25 20 275 300 35 350
x position of boxes

Carotid image as example, but is a generic system for vessel wall segmentation 2
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Polar segmentation: Polar-Seg-Reg

Sigmoid |

Lumen Prediction

wall Prediction

-

\

Segmentation probability maps
(within lumen and wall)

Qutput 2: Normalized
Boundary (lumen and
outer wall) locationin
polar coordinate

00

B — Lumen
at

Inverse
polar ”‘ N
- ( conversion=

Contour coordinates
from regression

* Input: Vessel wall images in Output 1:
256 polar coordinates probability
* Height (rotation direction): 256 map (lumen 256
input * Width (radius direction): 256 and outer wall)
Three neighboring * Depth: 3 (not shown in graph) in polar
256 . Channel: :
) Channel: 1 coordinates 256
slices concatenated 13232 S
256 L 128
256 128 2
64 64
Polar 1 % B 1o
conversion [
64 64
64 %
128 128\ 128 128
g\ i) |
32
256 128 ™~
16
512 16Q
128
RELU, Batch RELU, Batch RELU, Batch

normalization and
Max pooling (2*2*1)
in encoding branch

normalization and Up
sampling (2*¥2*1) in
decoding branch

normalization and
Max pooling (2*2*1)
in regression branch

\h | Reshape
8 connecte
0 -
512 256*2
e
4

64 64 3072

23
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Polar segmentation: Polar-Reg

256

input
256

13232

Input: Vessel wall images in
polar coordinates

Height (rotation direction): 256
Width (radius direction): 256
Depth: 3 (not shown in graph)
Channel: 1

256 128

128

64
Polar

conversion

64

512

—

RELU, Batch
normalization and
Max pooling (2*2*1)
in encoding branch

64

128 128\

L=4

32Q
32

—

RELU, Batch
normalization and
Max pooling (2*2*1)
in regression branch

256

Output 2: Normalized
Boundary (lumen and
outer wall) locationin
polar coordinate

Lumen ] e — Lumen

| wa Wl

( Inverse

/‘ polar ~
conversion=

Contour coordinates
from regression

| . Reshape
8 connecte
Nii N

512 256%*2

"6 e,
N

64 64 3072

24
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Polar segmentation: Polar-Res-Reg

256

input
256

256

Polar
conversion

512

—

RELU, Batch
normalizationand
Max pooling (2*¥2%*1)
in encoding branch

[1] He, et. al, arXiv, 2015

Input: Vessel wall images in
polar coordinates

Height (rotation direction): 256
Width (radius direction): 256
Depth: 3 (not shown in graph)
Channel: 1

Qutput 2: Normalized
Boundary (lumen and
outer wall) locationin
polar coordinate

00§

= { Inverse

ResNet 101 [1] polar = A
{ v
g = { conversion:| =
\\\ i ‘ — 00 |
~ o
\\ ] ® o ot

T

Contour coordinates
from regression

Reshape!

512 256*2

!
Sy i
~
\\\
~
\\‘
Fully
connecte

3072

—p

RELU, Batch
normalization and
Max pooling (2*2*1)
in regression branch

25
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Polar segmentation: Polar-Seg

Sigmoid e saicion
* Input: Vessel wall images in Output 1: N
256 polar coordinates probability -
* Height (rotation direction): 256 map (lumen 256 )
. * Width (radius direction): 256 and outer wall) 55
input - |
258 * Depth: 3 (not shown in graph) in polar -
13232 * hemre coordinates 236 Segmentation probability maps
l 32322 (within lumen and wall)
256 128 128
a 64 64 128
64
Polar l 4 64
conversion
64 64
64

128 128\

6
/4' 128 128

32D

32

256
512
— —_—
RELU, Batch RELU, Batch
normalization and normalization and Up
Max pooling (2*2*1)  sampling (2*¥2*1)in
in encoding branch decoding branch

[1] Kass, et. al, International Journal of Computer Vision, 1988

xo|

—

(1]

Snake

Contour coordinates
from segmentation

26
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Polar segmentation with rotatec

Input: Vessel wall images
in polar coordinates
Height (rotation
direction): 256

Width (radius direction):
256

Depth: 3 (not shown in
graph)

Channel: 1

128 128 \

_—

256
input :
256
1 32 32 .
¥
degree 128
Augmentation
Rotate 180 128
degree | o1 o4
Rotate 270
64
degree 256
64
Polar
conversion
512
—_—
RELU, Batch

normalization and
Max pooling (2%2*1)

RELU, Batch

in encoding branch decoding branch

Output 1:
probability

map (lumen 256

and outer wall)
in polar
coordinates

Rotate 180 |
RN

256

batches
NN

Rotate0

degree |

352 o

-’Wl
N

32EJ

128
128
64 64 34
1
Rotate 0
degree
64
64 o
/12 128
N Rotate 180 *
k“ | degree

normalization and Up
sampling (2*2*1) in

256

R —

RELU, Batch
normalization and
Max pooling (2*2*1)
in regression branch

128 128 \\

wWall Prediction Combined Wall Prediction

)
™
m

0

E B
ombined Lumen Pradicton

"Combined
probability map

— Boundary 1
consistency Segmentation
/ Confidence
| i ' Inverse *
" ) polar =
— " conversion=|
Combined :
contours
E Output 2: Normalized

Boundary (lumen and

polar coordinate

BEE outer wall) locationin
s |

64
BN, Reshape

4@@ @ @

512 256*2

3072
Fully
connected

27
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Segmentation uncertainty scores

. . Probability Map S Se tation M
 Segmentation confidence ' S
|.  Probability image (0-1) from output |: S[t, ] ) ]
Binary fill within contours from output 2: M|[t, 7]
3. Sum of probability inside vessel wall contours: - an
Zt Zr S * M = 50 100 150 = 100 150 200 250
re . S inside M . S outside M
4. Sum of probability map outside vessel wall contours:
Zt Zr(l —-S5)'M )

5. Pixels number inside vessel wall contours: );; )., M
6. Segmentation Confidence:

ZtZrS'M _ZtZr(l _S) - M

C O nf — 50 100 150 200 250 100 150 200 250
Zt Zr M Example for calculating the segmentation
— Boundary sharpness evaluation. UP to |, no lower confidence. Intuitively it is reflecting the

.. . . sharpness of boundaries.
limit. Higher value more confidence. P

28
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. Polar Prediction Rotation 0

Segmentation uncertainty scores

DI‘-‘olar Patch Rotation 0O

[128] = 0.226

* Lumen and wall boundary consistency ,[128] = 0.292

|. Lumen/Wall contours from rotated patch i at
polar angle t from output 2: L;[t], W;[t]

2. Standard deviation of contour predictions at angle [128] = 0.289

t: BLy = SD(Ly . ;[t]), BWy = SD(W, 5, ;[t])

3. Normalize to the worst case when all predictions
are random BL. /W, BW,/W

4. One minus mean of all h boundary points
€S, = 1—=#SFBL/W,CSy =1 ——* X} BW, /W

— Consistency for predictions from rotated patches. BLi2g = 5D(0.266,0.223,0.230)
Range from 0-1. Higher value more consistency BWi26 = 5D(0.292,0.289,0.295)

0 50 100 150 200 250

Fn’olar Patch Rotation 160 polar Prediction Rotation 160

Lies[128] = 0.230

0
0 50 100 150 00 250

Example of consistency at angle t = 128 (red
line) with 3 rotations i = 0,80,160 29
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Validation of uncertainty scores

* Uncertainty scores correlates with DSC for vessel wall
* With added noise, both DSC for vessel wall and uncertainty scores decrease

Segmentation Confidence With DSC Boundary Consistency With DSC

Uncertainty scores and DSC decrease with noise
1 1

1

o
o

0.8 0.995

o
o

0.99
0.6

bt
n

0.985
—8— Mean Conf

0.4

o
w

DSC-vw

Consistency
o
3

tation confidence / DSC

o
Y-}
oo
Boundary consistency

Segmentation confidenec

ol y L onf U
. o® osPartial correlation coefficient: Lumen £ . e
. 8
0 02 0o e 06 08 1 155 0-132 (p<le-5) Wall 0.047(p=0.045) "~ ,, -
02 ¢ ] 0.1 03 0.5 07 09 5
. . 05 : 096
Correlation coefficient 0.552 (p<le-5) DSC Holee el

DSC

® Lumen Consistency @ Wall Consistency

Decreased DSCYW and uncertainty scores

with added noise
Segmentation confidence with DSCYW  Contour consistency with DSCYW

from the Polar-Seg CNN architecture from the Polar-Reg CNN architecture %
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Segmentation results

Cartesian Patch

100

200

300

0 100 200 300 400

Polar Patch

100

200

300

400

500

100

150

200

Cartesian Label

100 200 300 400

Polar Label

50 100 150 200

100

200

300

100

150 1

200 4

250 1

Polar-Seg-Reg Prediction
DSC:0.770

100 200 300 400 500

Polar Prediction

— Lumen
Wall

50 100 150 200 250

[1] U-Net: Ronneberger, et. al, arXiv, 2015.[2] Mask-RCNN: He, et.al, ICCV,2017.

Mask-RCNN Prediction
DSC:0.540

U-net Prediction
DSC:0.592

100

200

300

400

500
100 200 300 400 500 0 100 200 300 400 500

B Blue: True positive

B Red: False negative
Green: False positive

Segmentation Confidence:-0.15

Lumen consistency: 0.98210
Wall consistency: 0.9823 |
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Segmentation results
Polar-Seg-Reg Prediction U-net Prediction Mask-RCNN Prediction
Cartesian Patch . Cartesian Label . DSC:0.865 . DSC:0.249 , DSC:0.794

100 100 100 100

200 200 200

300 _J 300

200

300 RN 300 300
400 400 400 400 400
500 500 500 500 500
0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500

Polar Patch . Polar Label . Polar Prediction
m— I Bue: True positive

50 4 50 50 1 .
B Red: False negative
100 | | 100 100 1 Green: False positive
150 - [ 150 150 - Segmentation Confidence: 0.17

Lumen consistency: 0.98762
Wall consistency: 0.983 14

200 1 200 200 1

250 1 250 250 1

S0 100 150 200 250 0 50 100 150 200 250

(=]

[1] U-Net: Ronneberger, et. al, arXiv, 2015.[2] Mask-RCNN: He, et.al, ICCV,2017. 32
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Comparison on segmentation quality (#slices = 3406)

#

DSCYW DSCINNE DSCOuter | DoSLumen | DoSWall # failed Processing | paramete
R segmentation time (s) rs in

network

Polar-Res-Reg 0.860 0.961 0.962 0.921 0.864 0 0.757+0.072 44,989,224
Polar-Reg 0.848 0.957 0.959 0.907 0.843 0 0.738+0.058 5,642,016
Polar-Seg-Reg 0.852 0.958 0.959 0912 0.840 0 1.264+0.066 7,386,914
Polar-Seg 0811 0.942 0.945 0.866 0.747 0 0.886+0.059 4,095,682

Mask R-CNN [1] 0.792 0.940 0.940 0.654 0.565 8l 0.138+0.027 63,733,406

Cartesian U-Net
[2]
DSC: Dice Similarity Coefficient, DoS: Degree of Similarity, higher better
[I]1 He, et.al, ICCV,2017.[2] Ronneberger, et. al, arXiv, 2015.[3] Petersen, et.al, Trans on Medical imaging, 2019.

0.774 0.922 0.941 0.647 0517 194 0.103+0.032 4,094,817

33
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Comparison on vascular feature accuracy

Max Wall Thickness Mean Wall Thickness Wall Area
MAD MAD MAD MAD

ICC (Cl) ICC (C) ICC (Cl) ICC (C)

0.890 °'8%f9(&§87' 0.484 °'8%f8(9°3:‘)’78' 25.715 °'9?9(&§84' 40.404 °'9%‘.'9(:§;83'
ses  OTAOIA g OFOONR g, 05O g, 0981 QT
0.916 0'8%3.9(:6?86' 0.507 0'8?8%?7" 27.221 0'9%3.9&?82' 43.625 0'9%3.9(::)’82'
a5 VRO gy OTROGH 5 g OISO gy 0571 0%
1.264 0'6503.6(705’32' 0.701 0'5%?5(‘?3";73' 32.171 0'9‘:)2.9(‘?5'?38' 62.567 0'9%?9(20:)385'
1.071 0'8'()98(2()i§98' 0.565 0'8%§8(5()é;28' 45,065 0'93()%9f5?23' 52.460 0'9‘:)?9(502'?45'

MAD: mean absolute difference, lower better.

ICC (Cl):intraclass correlation coefficient (with 95% confidence interval), higher better.

[I] He, et.al,ICCV,2017.[2] Ronneberger, et. al, arXiv, 2015.
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Application |: Automated popliteal vessel wall analysis

* FRAPPE (fully automated and robust analysis technique for popliteal artery
evaluation):

— Locate popliteal artery, segment vessel wall, and quantify vessel wall features
* Transfer from carotid model
— Only 25 scans labeled as the training set

* Successfully processed 48,716 knee scans, 3,490,998 slices, 70 years for
manual review

— Qualitative check 0.88% failure. Quantitative check DSC of 0.79.
e Useful features (mean wall thickness, etc) extracted for clinical research
* Open dataset

[1] Padua, et. al, MAGNETOM Flash, 201 I. 35
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Example slices

Original Image Zoom in to the artery contours

Segmentation Segmented lumen Segmented within Segmented vessel
area wall area wall

Patient id
9772736 slice 12
Bifurcation and
low contrast in

wall boundary

Patient id
9534036 slice 50
Large plaque
exists

Patient id
9919023 slice 66
Vein and artery
co-exist
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Application 2: Fast MR screening system for carotid lesion

e LATTE for Carotid 1. 30 MERGE Iy Pt 2] 7]
atherosclerotic lesion Sssessment

Screening 2iimage e 3. Artery 5. Artery 6. Lesion 7. Lesion
processing Detection ey e ; i
_ Fast scan + A utomated Localization Classification Visualization

vessel wall analysis

* Normal Artery

Example tracklet .
-+ Early Lesion
550
L]
3 0

Advanced Lesion

— Highlight artery segments
with early/advanced lesions

 Advance lesion classification 1
.« e e 4 throw away if
— Sensitivity: 0.924 low image quality

— Specificity: 0.919
Workflow of LATTE (Lesion Assessment

Through Tracklet Evaluation
[1] Balu, et.al, Magn. Reson. Med, 201 1. & )

[2] Jiang, et.al, SPIE Medical Imaging, 2020.
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Summary for completed work

* Achievement: A robust solution for vessel wall analysis
— Automated artery centerline generation + vessel wall segmentation
— From development to applications
* Innovations
— Tracking by detection approach on 3D vascular images
— Polar segmentation methods
— Segmentation uncertainty scores

* Technically and clinically useful

38
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Overview

* Background
* Completed work
— Vasculature centerline generation
— Vasculature segmentation
* Future directions
— Automated intracranial artery tracing
— Comprehensive vasculature map generation
— Vascular feature bank construction
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Direction |: Automated intracranial artery tracing

* Problems

— Intracranial arteries are complicated and tortuous
— Automated tracing is challenging

* Proposal

— Extend the tracklet approach for intracranial artery
tracing

S ised | ino f | 000+ h d MR scan of brain with complicated and
— SUpervised learning from 1, uman correcte tortuous intracranial arteries (displayed in

intracranial artery traces by iCafe[] reconstructed tubes)

Lumen

Tracklet Tracklet Artery Feature

segmentation

2] generation merging/removal refinement [3] extraction [1]

[T Chen, et. al, Magn Reson Med, 2018.[2] Chen, et. al, IEEE BIBM, 2017.[3] Chen, et.al, MICCAI CVII-STENT Workshop, 2019 40
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Intracranial artery centerline labeling tool: iCafe [1]

certain anatomical type
— Tracing by open-curve active contour algorithm [2]

— Manual editing to correct mistakes

Feature extraction

o
— Structural and flow features of arteries: length,

tortuosity, mean intensity, etc.
— Reproducibility validated [3]

[1] Chen, et. al, Magn Reson Med, 2018

[2] Wang, et.al. Neuroinformatics, 201 |
[3] Chen, et. al, Magn Reson Img, 2018

iCafe: an interactive tool to label tortuous arteries
— Each artery: centerline, with various radius and

*

User interface of iCafe
(implemented in C++ with ~60k lines
of codes)
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Segment luminal area with patch-based CNN

* Y-net: Patch based segmentation to better use similarity between arteries

* Training labels from corrected iCafe traces
* DSC of 0.83 on testing set

3D MRA with traces
from iCafe

From Chen, et. al, IEEE BIBM, 2017

Original image patch

HEEE ..
I el el

- - | |
el el el el

Label image patch

7

Ground truth
segmentation

Y-net segmentation
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Multiplanar reformation (MPR) on artery refinement

* MPR by straightening arteries using
interpolation for better visualization

* Easier to correct mistake by incorporating
global information

* In MPR view, optimization on
— Centerline positions
— Lumen radii
— Centerline deviations

From Chen, et.al, MICCAI CVII-STENT Workshop, 2019

Refinement

MPR
generation

Original MIP of TOF with
selected artery in blue

MPR images for TOF before and
after refinement
Centerline deviations (red arrows)

have been corrected  *



UNIVERSITY of WASHINGTON

Direction 2: Comprehensive vasculature map generation

Multiple

: Multiplex
Multiple vascular Multiple P _
vascular beds timepoints analysis
features targets

Comprehensive
vasculature map
Multiplex
Image Feature ,
analysis Feature visualization SUPpo.rtlng
technique ARSI technique techniques

technique
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Comprehensive features of cerebral vasculature

Topology and blood flow features from
generated centerline [1]

Artery radius feature from lumen
segmentation [2]

Plaque burdens features from vessel wall
segmentation [3]

Plaque/stenosis features from vascular
disease detection models [4]

Plaque risks feature from plaqgue component
and signal analysis [5]
Longitudinal changes of features

[1] Chen, et. al, Magn Reson Med, 2018.[2] Chen, et. al, IEEE BIBM, 2017.
[3] Chen, et. al, submitted to IEEE Trans on Med Img, Under review.
[4] Han, et.al, [5] Li, et.al, submitted to ISMRM 2020, under review.

iCafe visualization of multiplex features

[

N | irren

N Outes wWall

[ IMecrotic/Lipid Core
i sion
| oo M atiiv
_ Type | Hamarrhage

B Type | Hemonhage
ik 7}

Vessel wall signal histogram

=

Intracranial arteries with centerline
and radius/ lumen segmentation
and outer wall segmentation
and detected plaque/stenosis locations
and plaque components
and plaque signal pattern
and longitudinal changes 45
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Direction 3: Vascular feature bank construction

* With large amount of vascular features and clinical data of patients
* Build a vascular feature bank to

— Manage features

— Understand features

— Utilize features
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Direction 3: Vascular feature bank construction: manage

Vascular feature bank

Save
Feature < Intracranial vascular length: =
extraction 2520 mm , R
e Carotid max wall Patient | Patienti Patient N
Vascular )
thickness: 2.1 mm
Scans .
* Popliteal number of
‘ possible stenosis: 2
* CNN features from
Image from embeddings sl Features Features Features
www. | 23rf.com ‘ °

* Age, gender, weight, smoking, family
history of vascular disease...

* Blood pressure, hyperlipidemia,
high/low-density lipoprotein

Demographic information
collection, lab tests

—

Diagnosis
» Disease occurrence, progression
Patient i pattern, treatment effects 47
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Direction 3: Vascular feature bank construction: Understand

Vascular feature bank
* Clustering algorithm to discover patterns

from features of population
Patient | Patient i Patient N

— Explore the clinical implication of clusters.
— Which features are correlated?

Features Features Features

* Explore the relation between features and
clinical outcomes

— Whether patients in certain cluster are likely
to have for certain vascular disease!?

— Construct a vascular risk score to assess
vascular health.
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Direction 3: Vascular feature bank construction: utilize

o

Vascular Intracranial arteries
Scans PR A T T

Demographic information

Image from
www. | 23rf.com

I

New Patient

collection, lab tests N

Vascular feature bank

L

Imaging Patient | Patient i Patient | Patient N

features Retrieve

subjects

™ with .
o s in
similar - ith :
=1 i Features eatures Features eatures
on-Imaging | features b
features
=

Diagnosis with
references
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Feature map generation for plaque identification
Patch

20 “" :_\ % Normal

e Normal
Plague

=20 -15 -10 -5 0 5 10 15

20

Feature embedding after metric learning

(color painted from ground truth)
From Chen, et.al, ISMRM, 2020 (under review)

Patch 1
Predicted plaque
probability: 0.00
Labeled as Normal
artery

Patch @
Predicted plaque
probability: 0.75
Labeled as Plaque

Patch ®
Predicted plaque
probability: 0.75
Labeled as Plaque
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Summary for future directions

 Automated -> Fast and applicable to large population

 Comprehensive -> Comprehensive vascular features analysis, extraction
and visualization

* Informative -> Understand vascular disease pattern & Deliver more precise
medical care
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Conclusions

e Goal:

— Automated construction of comprehensive vascular map for vascular assessment

Innovative achievements:
— A centerline generation solution for all vasculature
— Polar segmentation architecture for robust vessel wall segmentation

Future directions:
— Automated, comprehensive, and informative vascular feature extraction

Significances:
— Novel imaging features as imaging biomarkers for vascular research
— Clinically applicable workflow to assist clinicians to provide better health care
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Related Journal Publications

iCafe trilogy: development — validation — application

Li Chen, et. al, Jeng-Neng Hwang, Chun Yuan. Development of a quantitative intracranial vascular
features extraction tool on 3D MRA using semiautomated open-curve active contour vessel tracing.
Magnetic resonance in medicine (IF:3.9), 2018, 79 (6), Pages 3229-3238. DOI: 10.1002/mrm.26961.
Editor’s pick.

Li Chen, et. al, Jeng-Neng Hwang, Chun Yuan. Quantification of morphometry and intensity
features of intracranial arteries from 3D TOF MRA using the intracranial artery feature extraction
(iCafe): A reproducibility study. Magnetic Resonance Imaging (IF:2.1), 2019, 57 (April 2019), Pages
293-302. DOI: 10.1016/j.mri.2018.12.007

Li Chen, et. al, Jeng-Neng Hwang, Chun Yuan. Quantitative Assessment of the Intracranial
Vasculature in an Older Adult Population using iCafe (intraCranial Artery Feature Extraction).
Neurobiology of Aging (IF:4.4), 2019, 79 (July 2019), Pages 59-65. DOI:
10.1016/j.neurobiolaging.2019.02.027
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Related Journal Publications

Vessel wall analysis trilogy: segmentation — quantification —
detection

4. Li Chen, et. al, Jeng-Neng Hwang, Chun Yuan. Automated Artery Localization and Vessel Wall
Segmentation of Magnetic Resonance Vessel Wall Images using Tracklet Refinement and Polar
Conversion. (under review)

5. Li Chen, et. al, Jeng-Neng Hwang, Chun Yuan. Fully automated and Robust Vessel Wall Feature
Extraction from Standardized Knee MRI. (under review)

6. Li Chen, et. al, Jeng-Neng Hwang, Chun Yuan. Carotid Artery Atherosclerotic Lesion Detection
using an Al based Fully automated Workflow Based on 3D MRI. (under review)

Centerline refinement

7. Li Chen, et. al, Jeng-Neng Hwang, Chun Yuan. Automated Cerebral Vascular Measurements
Refinement in Clinically Challenging Patient Populations. (under review)
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Related Conference Publications

Li Chen, et. al, Jeng-Neng Hwang, Chun Yuan. Simultaneous Intracranial Artery Tracing and
Segmentation from Magnetic Resonance Angiography by Joint Optimization from Multiplanar
Reformation. Machine Learning and Medical Engineering for Cardiovascular Health and Intravascular
Imaging and Computer Assisted Stenting, First International Workshop, MLMECH 2019, and 8th
Joint International Workshop, CVII-STENT 2019, Held in Conjunction with MICCAI, 2019,
Shenzhen, China (October |3), Pages 201-209. DOI: 10.1007/978-3-030-33327-0

Li Chen, et. al, Jeng-Neng Hwang, Chun Yuan. 3D intracranial artery segmentation using a
convolutional autoencoder. 2017 |EEE International Conference on Bioinformatics and Biomedicine
(BIBM), 2017, Kansas City, MO, USA (November |3 - 16). DOI: 10.1109/BIBM.2017.8217741

55



UNIVERSITY of WASHINGTON
Acknowledgement

* Thanks for the advices from advisors and committee members.

 Thanks for the support from Information Processing Lab and Vascular
Imaging Lab.

* Thanks for reviewers providing high quality manual traces or contours.

* We acknowledge the contributions from our collaborators.
— CBIR/CARE IlI/OAI/CRORP investigators

* Thanks for the funding supports from Philips healthcare, National Institute of
Health, and American Heart Association.

* We gratefully acknowledge the support of NVIDIA Corporation for donating
the Titan GPUs.

56



UNIVERSITY of WASHINGTON

Thanks for your attention!

Information Processing L.ab”
Department of Electrical and Computer Engineering
University of Washington

Vascular Imaging Lab
Department of Radiology
University of Washington

57



