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Human vasculature plays an important role in maintaining human body function. And vascular 

diseases are the top leading cause of death around the world. While advanced vascular imaging 

techniques are available to visualize human vasculature and disease regions, clinically relevant 

information in medical images (artery structural information, atherosclerotic plaque burden, etc.) 

remains to be extracted, quantified, validated and explored. Challenges exist preventing the feature 

extraction and quantification on human vasculature, partly due to the difficulties from the small 

artery region in the images, complex geometry of arteries, variable signals around vessel 

boundaries, and limited datasets available for vascular images.  



 

In this dissertation, a toolbox of novel algorithms (the Cafe family) was proposed to facilitate 

3D vascular image analysis so that comprehensive features of human vasculature can be extracted 

and quantified automatedly. The endpoint of the analysis is a quantitative vasculature map, which 

includes three categories of useful imaging features: artery structural features such as artery 

length, plaque morphometry features such as vessel wall thickness, and vascular disease features 

such as potential artery segments with atherosclerotic lesions. Three key technical innovations 

were proposed: 1) Three artery centerline tracing and labeling methods (tracklet refinement, 

iCafe, AICafe) based on different vascular beds and applications for extracting artery structural 

features; 2) Y-net and polar segmentation algorithms for extracting plaque morphometry 

features, including both inner vessel wall (lumen) and outer wall; 3) a domain adaptive 

classification model for extracting atherosclerotic lesion features.  

Generating centerlines of arteries (list of 3D points with radii) is the starting point for the 

quantitative vasculature map construction, as centerlines not only provide artery structural 

features, but also identify region of interest for further vascular analysis. Three different 

approaches were proposed for artery tracing based on different vascular beds and purposes of 

applications. 1) For arteries with relatively straight structures, such as carotid or popliteal arteries, 

a slice-based artery detection method combined with the tracklet refinement algorithm was 

proposed to generate centerlines along the luminal centers of arteries. 2) For more challenging 

arteries with tortuous paths, such as intracranial arteries, a semi-automated image processing 

technique with graphical user interface (iCafe) was proposed to generate artery centerlines and 

label anatomical names for arteries with human corrections. 3) When fully automated process is 

needed, artificial intelligence (AI) techniques were applied to the iCafe workflow, so that the 

AICafe (AI+iCafe) method trained with processed iCafe results can automate artery tracing and 



 

labeling. With artery centerlines and anatomical labels generated using either of the three 

approaches, a series of artery structural features can be extracted, such as artery length, volume 

and tortuosity for global or user defined artery groups. These features, as quantitative 

representations of artery structure and cerebral blood flow, have demonstrated to be useful in 

various vascular research.  

After artery centerline generation, artery patches (region of images with artery in the center) 

can be extracted along the artery centerline for lumen/vessel wall segmentation to further assess 

luminal structures and atherosclerotic plaques. Traditional manual or semi-automated 

segmentation methods are time-consuming and only applicable to large straight arteries, limiting 

its usage in clinical setting or medical research. We propose fully automated lumen/vessel wall 

segmentation methods (Y-net and Polar models) for delineating lumen and outer wall boundaries 

based on different Magnetic Resonance (MR) sequences. For bright blood MRI (such as MR 

angiography) where only lumen areas are visualizable (bright in signal), Y-net (a patch-based 

lumen segmentation algorithm using convolutional neural network) is used to segment lumen 

regions from 3D images. For black blood MRI (such as MR vessel wall imaging (VWI)) where 

both lumen (black in signal) and vessel wall (bright in signal) are visualizable, lumen/vessel wall 

segmentation is more challenging due to the variable vessel wall signals and flow artifacts. We 

propose a polar-based method to segment vessel walls in the polar coordinate system so that the 

lumen/vessel wall boundaries are smoother and more continuous than traditional Cartesian-based 

methods. In addition, segmentation confidence was available from our model to suggest optional 

manual checking on challenging slices. The automated lumen/vessel wall segmentation was useful 

in various vascular research. For example, our FRAPPE tool (a member of Cafe family, designed 

for popliteal vessel wall analysis) reduced the analysis time for popliteal arteries in a knee MR 



 

scan from 3 hours (manual) to 7 minutes (automated), which made large population analysis on 

lumen/vessel wall feasible. 

In addition to vascular structure features and plaque morphometry features, identification and 

classification of possible segments of arteries having vascular disease (for example, atherosclerotic 

lesions) can provide additional vascular disease assessment features for the quantitative 

vasculature map. LATTE (another member of Cafe family) was designed for automated lesion 

identification and classification. In combination with a 2-minute MR VWI imaging sequence 

(MERGE) and an image quality assessment module, LATTE classifies artery slices along the 

centerlines into normal arteries, early lesions and advanced lesions, so that patients with vascular 

diseases can be identified and their artery segments with vascular diseases can be highlighted. One 

major challenge for robust lesion classification is the domain shift between different MR datasets 

(signal variations due to different scanners, imaging parameters, coils, etc.), due to which machine 

learning models developed from a single dataset may not perform robustly when deployed to new 

datasets. In order to reduce the domain shift, an unsupervised domain adaptation algorithm was 

applied on lesion classification. Without additional annotations, the CNN adapts its parameters 

based on the domain irrelevant signals from both the source and target datasets so that the final 

classification performance can be improved. LATTE was fast in analysis and robust towards 

various datasets. In addition to extract lesion related features, LATTE can also be a good candidate 

to be used clinically as a screening tool for vascular diseases.  

With the Cafe family toolbox loaded with novel algorithms of medical image analysis and 

machine learning, artery centerlines were identified, lumen/vessel wall regions were segmented, 

and regions for vascular disease were located and categorized automatedly. The multi-dimensional 

features extracted and quantified from vascular images formed a quantitative vasculature map 



 

which provides comprehensive information for vascular health and helps us better explore the 

disease pattern of human vasculature.  
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Chapter 1. INTRODUCTION  

1.1 HUMAN VASCULATURE 

Human vasculature system circulates blood throughout the human body to maintain functioning 

of all organs. Any abnormal conditions of blood vessels (arteries and veins) can cause severe 

disability and death. Vascular disease is the leading cause of death globally, accounting for 17.3 

million deaths per year, a number that is expected to grow to more than 23.6 million by 2030 [1].  

Ischemic stroke due to atherosclerosis is one of the common cardiovascular diseases where 

plaque builds up in the arteries to form a stenosis or occlusion [2]. Artery is usually a tubular 

structure with inner wall (lumen, where blood flows inside) and outer wall. The advanced 

atherosclerotic plaque is of high risk for vascular health, as it can either reduce blood flow to distal 

artery regions, or a plaque may burst with embolus travels with the blood flow to cause a blockage 

further distal in the vascular system. Monitoring atherosclerosis status thus includes two main 

perspectives: identify artery structures to assess blood flow and identify vessel wall regions to 

assess plaque development and lesion burden. In addition, atherosclerosis is known as a systemic 

disease occurring in all vascular beds of human vasculature, for example, causing clinical events 

to the heart (coronary heart disease), brain (ischemic stroke), or lower extremities (peripheral 

vascular disease) [3]. The vasculature analysis is thus necessary for all vascular beds.  

Vascular images, frequently from Magnetic Resonance Imaging (MRI) allows visualization 

of arteries in human vasculature. With different imaging parameters configurable in MRI, signals 

from blood regions can be either enhanced or suppressed, leading to different MRI sequences for 

imaging vasculatures. For example, Time of flight (TOF) Magnetic Resonance Angiography 

(MRA) has been commonly used to depict luminal stenosis resulting from atherosclerosis 

progression by enhancing signals in vascular regions. Due to the bright signals in the lumen areas 



 

 

7

of arteries, MRA is also called a bright blood MRI sequence. The limitation for MRA is it can 

only identify lumen areas without clear signals on vessel wall areas. So more recently, through 

Magnetic Resonance (MR) Vessel Wall Imaging (VWI), vessel wall structures and pathologies 

can be characterized without radiation or contrast agents, providing additional diagnostic values 

[4], [5]. Due to the suppressed signals in the lumen areas, the MR VWI is a black blood MRI 

sequence. Figure 1.1 shows several examples of bright blood and black blood vascular images 

from MRI.  

 
Figure 1.1 Example of vascular images. 

Top: Maximum intensity projection (largest intensities along axial direction of a 3D image 

mapped into a 2D image) of intracranial arteries using MRA. Middle: Multiplanar reformation 

view of a carotid artery (with bifurcation) using the 3D Motion-Sensitized Driven Equilibrium 

prepared Rapid Gradient Echo (MERGE) sequence. Bottom: Multiplanar reformation view 

of a popliteal artery (with stenosis) using the 3D Dual Echo Steady State (DESS) MR imaging 

technique. Arteries are highlighted in the orange boxes. Normal vascular variations or disease 

related changes are frequent on vasculatures adding difficulties for quantitative analysis, such as 

complete/incomplete circle of Willis, plaque caused reduction of blood flow (top), carotid 

bifurcation (middle), and artery stenosis (bottom). 
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Extracting and quantifying the vasculature, especially identifying vascular features related 

with vascular disease from 3D vascular images is important in vascular analysis. For example, 

from MRA, human vasculature can be digitally constructed into a network of inter-connected tubes 

to identify the artery structures and assess the vessel density as a representative of blood flow. 

Vessel wall segmentation in MR VWI provides quantitative measurements of atherosclerotic 

burden, which can be exploited for monitoring disease progression in serial studies and clinical 

trials [6], [7].  

1.2 TECHNICAL CHALLENGES 

It is challenging to extract and quantify features from vascular images, mainly due to three 

reasons, 1) small and complicated geometry for arteries, 2) low image quality or signal contrast 

between vessel and surrounding tissues in vascular images, and 3) limited datasets available for 

vascular images. Some challenging examples from both bright blood MRA and black blood VWI 

are shown in Figure 1.2. 

Small and complicated geometry for arteries. Due to the 3D nature of vasculature, vascular 

images are usually acquired in 3D space. The arteries are tiny structures (usually take less than 

0.1% of the image space) compared with other human organs. Usually, small but anatomically 

important arteries, such as posterior communicating arteries, are hard to be identified and 

quantified accurately. To analyze arteries, a region of interest identification is usually required. 

However, correct target artery identification is not easy, as usually more arteries than the artery of 

interest co-exist in the view. For example, in the carotid region, the internal carotid artery (ICA) 

is of our interest instead of the external carotid artery (ECA), so the algorithm needs to identify 

the ICA although ICA and ECA are quite similar in appearance. In addition, not all the human 

vasculature has straight tubular structures easy to be identified. Intracranial arteries (Figure 1.1 
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top), for example, are a complex network of tortuous arteries with substantial inter-individual 

variations [8]. In addition, human vasculature is often with physiological or pathophysiological 

changes and inter-subject variations, arteries may bifurcate into smaller branches (Figure 1.1 

middle, fourth image in Figure 1.2) or suffer from stenosis (Figure 1.1 bottom). 

Low image quality or signal contrast between vessel and surrounding tissues in vascular 

images. Current imaging techniques are not perfect for visualizing vasculatures, introducing 

imaging artifacts or leading to poor image qualities. For example, MRA has relatively weak signal 

from small branches (first image in Figure 1.2), resulted from slow or in-plane blood flow. MR 

VWI is easily affected by artifacts (last image in Figure 1.2) including poor flow suppression and 

motion artifacts. MR hardware can also cause problems, such as coil inhomogeneity (third image 

in Figure 1.2) will lead to uneven signal intensity within the image slice. For vessel wall imaging, 

blood flow can be suppressed to display lumen areas with high contrast, but the outer wall is hard 

to visualize using the current imaging technique. Signals around outer wall boundaries may have 

similar image intensity with surrounding tissues (second image in Figure 1.2).  

 
Figure 1.2 Examples of vessel wall slices challenging for segmentation.  

Frist slice is from MRA, the rest are from MR VWI. ECA: external carotid artery, which is 

not of interest. ICA: internal carotid artery, which is of interest.  

 
Limited datasets available for vascular images. The data and label availability for vascular 

images is another challenge. Unlike natural images where abundant data with labels of good 
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quality are publicly available, the lack of vascular images due to the expensive MRI scan is a major 

restriction to develop machine learning models in vascular image analysis. In addition, only trained 

vascular reviewers with sufficient medical background are capable of reviewing the vascular 

images and labeling the vascular markers (vessel wall contours, lesion types, etc.), which adds 

more difficulties for vascular image analysis. Developing techniques with limited training samples 

and labels is always desired in vascular image analysis. 

1.3 AIMS 

We proposed to use medical image analysis and machine learning techniques on vascular images 

to construct a quantitative vasculature map, which includes artery centerline generation (tracing 

and anatomical labeling), vessel wall segmentation, and atherosclerotic lesion identification, so 

that comprehensive vascular features can be extracted and quantified from the vasculature map for 

vascular analysis.  

Related work will be discussed in Chapter 2. Then three major components for constructing 

the quantitative vasculature map will be introduced in Chapter 3-5. Chapter 3 will focus on artery 

centerline generation, including three approaches for artery tracing and anatomical labeling 

(tracklet refinement, iCafe, AICafe), followed by artery refinements and related clinical 

applications. Chapter 4 will cover the topic of lumen/vessel wall segmentation, including the Y-

net and polar-based segmentation approaches. FRAPPE, as a clinical application for vessel wall 

segmentation will also be introduced in this chapter. In Chapter 5, the extraction of atherosclerotic 

lesion features using an identification and classification method (LATTE) will be discussed with a 

focus on the domain adaptation for improving cross-domain performance. Finally, we will draw 

conclusions in Chapter 6. 
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Chapter 2. RELATED WORK (BACKGROUND AND CHALLENGE) 

Vascular analysis algorithms or tools reported in literation are usually focused on a specific task 

with limited capabilities. There is no existing method to extract and quantify vascular features on 

both large and small arteries, on both lumen and outer wall, applicable to multiple vascular beds, 

and can highlight segments of arteries having atherosclerotic lesions. Without such comprehensive 

features, the representation of the overall health status of human vasculature is not complete, and 

the diagnostic value for vascular disease is greatly limited.  

The most related vascular image analysis methods with our quantitative vasculature map can 

be mainly summarized into several topics: artery tracing (section 2.1), artery anatomical labeling 

(section 2.2), and vessel wall segmentation (section 2.3). After different image analysis methods, 

we will discuss the vascular feature extraction approaches (section 2.4) and summarize this chapter 

(section 2.5). 

2.1 ARTERY TRACING 

Artery tracing converts artery voxels from 3D images into interconnected tree structures with 3D 

artery centerlines (list of 3D points with various radius at each point). Due to the complexity of 

artery structures in 3D space, especially intracranial arteries, there are few manual tracing methods 

[9]. Most semi-automated or automated methods can be summarized into segmentation-based or 

tracking-based approaches. 

Segmentation-based approaches. Voxels belonging to the vascular region are first 

segmented, then a vessel skeletonization method identifies artery centerlines through iterative 

thinning. Finally, radii along the centerlines are estimated by fitting the segmented voxels. 

Methods belonging to this approach mainly differ in the segmentation algorithm, which was 
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comprehensively discussed in review papers [10]–[12]. Recently, convolutional neural network 

(CNN) based vascular segmentation has become the predominant method, such as using the 

inception module equipped U-Net (Uception) [13], the Dense-net equipped U-Net (DDNet) [14], 

the multi-path 2.5D based VesselNet [15], the DeepVesselNet [16] with cross-hair filter to apply 

2D and 3D information, the JointVesselNet [17] with dual-stream segmentation using 3D volume 

and 2D maximum intensity projection, and the radial distance transformed segmentation [18]. 

However, usually for these methods, there is no guarantee for the smoothness and continuity of 

vessels after skeletonization. Moreover, two nearby vessels close to each other might be traced as 

one large vessel.  

Tracking-based approaches. Initial seeds are identified as the starting points from the 

vascular image, then the artery centerline and radius are directly identified from seed points 

through iteratively stretching both ends of the trace during tracking. It is critical to predict the 

correct direction for stretching, which can either be decided by human designed rules, for example, 

the first principal direction of the Jacobian matrix of images [19], Hessian-based estimation [20], 

Kalman filtering [21] or from a neural network used in CNN Tracker and DCAT [22], [23]. Traces 

generated by tracking methods might be rough or zigzagged. To solve this issue, some smoothness 

constraints such as the active contour model can be combined in the tracking approach to ensure 

smoothness and fitness of centerlines [24]. In addition, tracking-based approaches are sensitive to 

initial seed placement. When the image quality suffers, improper seed selection is likely to cause 

tracing leakages into the background or lead to incomplete vasculature tracing.  

To ensure robust artery tracing, post-tracing artery refinement by centerline positions re-

centering is sometimes performed. Adjusting centerline positions using intensity information [40] 

or segmentation results [43] from re-sliced 2D cross-sectional planes is usually used, but such 
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methods do not consider the longitudinal information along the artery centerlines, which might be 

valuable in artery refinements. 

In summary, 1) previous manual or semi-automated artery tracing methods cannot reliably 

identify all the vasculatures in vascular images, limiting the available features that can be 

extracted; 2) segmentation-based and tracking-based approaches have their own strength and 

weakness; 3) global vascular prior knowledge, for example, intracranial arteries are likely to have 

tree (non-loop) structures, has not been well utilized in model design for artery tracing.  

2.2 ARTERY ANATOMICAL LABELING  

Artery anatomical labeling is the step of assigning artery names to each segment of trace. This task 

is especially challenging for intracranial arteries where hundreds of arteries are inter-connected in 

a vascular tree. Thus methods for artery labeling are mainly focused on intracranial artery labeling, 

or more specifically the Circle of Willis (CoW) arteries located in the center of intracranial arteries. 

An example of labeled intracranial arteries and the simplified graph illustration of intracranial 

arteries is shown in Figure 2.1.  

 
Figure 2.1 Intracranial artery images and structures. 

(a) Time of flight (TOF) MRA of cerebral arteries. (b) Intracranial arteries labeled in 

different colors. (c) Illustration of CoW (yellow), left (blue) and right (red) anterior circulation, 

posterior circulation (red) and optional artery branches (black) with their anatomical names. 
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When there are intracranial arteries variations, not only the optional artery branches, but also A1, 

M1, P1 segments may be missing.  

 
There have been continuous efforts in automating intracranial arteries labeling, using either 

private datasets with a limited number of scans or the publicly available UNC dataset with 50 

cerebral Magnetic Resonance Angiography (MRA) images [25]. Takemura et al. [26] built a 

template of the CoW on five subjects, then arteries were labeled by template alignment and 

matching on fifteen scans. A more complete artery atlas was built from a population-based cohort 

of 167 subjects by Dunås et al. [27], [28] using a similar matching approach, and arteries were 

labeled in 10 clinical cases. Bilgel et al. [29] considered connection probability within the cerebral 

network using belief propagation for labeling 30 subjects but the method was limited to anterior 

circulations. Using the UNC dataset, in the serial work from Bogunović et al. [30]–[32], eight 

typical intracranial arteries graph templates were used to represent intracranial arteries with 

variations, and bifurcations of interest were defined and classified so that vessels were labeled 

indirectly. However, more variations exist beyond the eight typical types. Using the same dataset, 

by combining artery segmentation along with the labeling, Robben et al. [33] simultaneously 

optimized the artery centerlines and their labels from an over complete graph. However, their 

computation involved thousands of variables and constraints, and took as long as 510 seconds per 

case.  

In summary, while previous works have shown success in labeling relatively small datasets 

with limited variations in mostly healthy populations, 1) prior knowledge about the global artery 

structures and relations has not been fully explored; 2) robustness of methods is unclear if the 

algorithms are not fully assessed on large diverse and challenging datasets; 3) labeling efficiency 

has not been considered for a large number of scans, which is needed for clinical applications.  
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2.3 VESSEL WALL SEGMENTATION  

Vessel wall segmentation is the voxel-wise identification of areas belonging to lumen/vessel wall 

regions, so that quantitative features on vessel wall morphology can be quantified.  

Vessel wall segmentation is challenging due to the small area of vessel wall and variable 

contrasts in outer wall boundaries. Many previous studies for quantitative analysis of vessel wall 

relied on manual vessel wall segmentation by drawing inner and outer boundaries of the arterial 

wall (lumen and outer wall) in each slice of MR image [34], which is tedious and subject to reader 

variability [35].  

Semi-automated or automated methods have been proposed to segment vessel walls, such as 

using active contour models by Yuan et al. [36] and Adams et al. [37], active shape model by 

Underhill et al. [38], or using graph cut by Arias-Lorza and Petersen et. al. [39]–[41]. Another 

category of methods segment vessel wall area by classifying pixels into vessel wall regions and 

non-vessel wall regions using machine learning models [42], [43]. More recently, machine 

learning techniques, especially CNN methods become another approach for vessel wall 

segmentation, and achieved success on carotid arteries [44] and intracranial arteries [45]. CNN 

based methods rely heavily on well annotated labels, which might be challenging to find, and the 

segmentation quality might deteriorate for new datasets.  

Due to the small artery size in vascular images, manually locating the artery of interest is 

required for most methods, but some methods try to automatically locate arteries by referring to 

registered MRA, in which lumen areas are better visualized [46]. In addition, Hough circle 

detection has been attempted to detect arterial centers under the assumption that arteries are 

circular in shape [47], which might not always be true. These methods reduce some manual steps 

and show reasonable agreements for images with high vessel wall contrast.  
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In summary, there are three major problems for existing vessel wall segmentation methods. 

1) Extensive human input is still needed for most methods, including contour initialization [36], 

[37], seed point initialization [38]–[40], [42], [43], and registration of image sequences [46]. 2) 

Feedback from the automated segmentation models, for example, the confidence of the 

segmentation is usually not available, but might be useful for clinicians to manually check the 

problematic slices to ensure the segmentation quality. 3) The robustness of algorithms was not 

fully explored in previous studies likely due to the limited number of annotated samples in a 

specific vascular region. 

2.4 VASCULAR FEATURE EXTRACTION 

Artery structural features can be extracted from artery tracing results. Existing artery structural 

feature extraction methods apply to arteries up to different size levels and the number of available 

anatomical labels are diverse, leading to various number of vascular features available for analysis. 

[49], [50] are limited to four morphometric features (vessel number, radius, two tortuosity features) 

from each of the four anatomic regions (anterior/posterior left/right) of the intracranial arteries. 

Wright et al [51] used L-Measure, an open-source tool to quantify 19 morphometric features from 

six major arteries stemming from the circle of Willis (CoW). The limited number of vascular 

features cannot cover all morphometric features in each important region of the vascular tree.  

Features for describing the atherosclerotic plaques can be quantified from the segmentation 

results, for example, vessel wall thickness, lumen/wall areas and normalized wall index (wall 

area/(lumen area + wall area)). Current work on vessel wall analysis usually focused on several 

cross-sectional slices from large arteries with simple structures (carotid arteries). Complete vessel 

wall assessment on the whole artery with both large and small sizes is rare (for example, vessel 

wall analysis along intracranial arteries). However, both artery structural and vessel wall features 
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are related with atherosclerotic plaque status. Lacking either part of features might limit the 

capability for detailed vascular analysis.  

Besides quantitative vascular features, from the clinical perspective, additional information 

on which artery segments have vascular diseases with disease severity can provide assistance on 

vascular disease diagnosis. However, current vessel wall analysis is limited on extracting plaque 

features without the additional step of identification and classification of the segment of arteries 

with atherosclerotic lesions, partly due to the complexity in artery structures and labor-intensive 

annotations.  

2.5 SUMMARY 

Although individual vascular analysis algorithms have contributed on either artery tracing, 

artery labeling and vessel wall segmentation, none of the studies combined artery structural 

information, vessel wall information and vascular disease related information into a 

comprehensive quantitative vascular map. In addition, current vascular analysis is not usually 

applicable on both large and small arteries, may not have complete artery labeling categories, and 

some algorithms lack the necessary automation for large population studies. These limitations 

restrict the vascular image analysis capabilities. 

 



Chapter 3. ARTERY CENTERLINE GENERATION  

Finding the artery centerlines by artery tracing is the first step for vascular analysis. Artery 

centerlines (a list of points with 3D coordinate in the image space and the corresponding radius at 

each point) are ideal representations to quantify vascular structures and locate the analysis region. 

When artery anatomical names are associated with each centerline, arterial segment-specific 

features are available for region based detailed analysis.  

Human vasculature has diverse anatomical structures requiring different approaches for 

centerline generation. 1) For arteries with relatively straight structures, such as carotid arteries, 3D 

vascular images have relatively similar 2D cross-sectional slices for vascular regions along one 

axis, which can be used to develop an efficient 2D artery detection + 3D tracklet refinement 

method for centerline generation (section 3.1). 2) For more tortuous intracranial arteries, for 

example, tracing arteries in 3D space is required for centerline generation, but it is more 

challenging due to the more complex geometry of intracranial arteries, thus a semi-automated 

method (iCafe) was developed to accurately trace arteries with manual supervisions on automated 

results (section 3.2). 3) When fully automated analysis is needed, AICafe (AI+iCafe) method was 

developed from processed iCafe results for fully automated artery tracing and labeling using 

artificial intelligence (AI) techniques. AICafe includes two important modules: deep open snake 

tracker (DOST) for artery tracing (section 3.3) and a graph neural network solution for artery 

labeling (section 3.4). 

To further improve artery centerlines, especially for vascular images with low image qualities 

(for example, infant intracranial images with motion artifacts), an artery refinement algorithm was 

used to make corrections based on straightened curve planar reformation (CPR) view (section 3.5). 
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Section 3.7 listed examples of applying the centerline generation methods to various clinical 

applications. 

Part of the contents from this chapter were described in details in our previous publications 

[48]–[56].  

3.1 CENTERLINE GENERATION USING TRACKLET REFINEMENT  

Ideally, when sliding through 2D slices of a 3D image in the direction perpendicular to the 

flow direction of an artery, vascular regions are represented in similar circular shapes in 2D slices. 

An example of multiple axial slices of a common/internal carotid artery is shown in Figure 3.1. 

The similarity of arteries in 2D slices indicates the feasibility of using an object tracking approach 

to identify the arteries. Similar to object tracking in videos, if the time axis in a video is considered 

as the depth axis in a 3D image, a tracking by detection approach can be applied in artery tracking 

in 3D space. For robust artery tracking, three steps, region of interest identification, lumen center 

detection followed by tracklet refinement, are required.  First, a 2D artery detector was used to 

locate potential artery locations, then lumen centers were identified from lumen segmentation, and 

artery centerlines were generated through refinements using locations of arteries from neighboring 

slices. 
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Figure 3.1 . An example of multiple axial slices of a common/internal carotid artery 

(indicated by the red bounding boxes). 

 

3.1.1 Region of interest identification 

For artery detection, a Yolo V2 detector [57] based on CNN was used to predict bounding 

boxes (minimum encompassing rectangles covering whole artery regions) of arteries in each image 

slice with an artery detection score. The original weights of the Yolo detector were used to further 

train the model in artery detections given manual labels of artery bounding boxes. 

3.1.2 Lumen center detection  

Accurate patch extraction from the lumen center is important for the following artery analysis 

(such as vessel wall segmentation). However, the center of bounding boxes from the Yolo detector 

may not be the same as the geometric lumen center when the arterial shape is not a perfect circle 
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(Figure 3.2B shows an example). Instead, we predicted centers of the lumen near the bounding 

boxes using the following steps. First, a 2D U-net [58] was trained to predict the minimum distance 

to the nearest non-lumen area for each pixel. Then, the predicted minimum distance map was 

thresholded using the Otsu’s method [59] and divided into connected components based on pixel 

connectivity. Components having no overlap with the bounding box were removed, and the centers 

of the remaining components were used to represent each possible lumen. The value of the 

minimum distance map at each lumen center was used as the confidence score for the centers. 

 

Figure 3.2 An example of centerline generation on carotid arteries. 

A, B: Bounding boxes detected by Yolo V2 at slices 10 and 11 to identify rough artery 

locations.  

C, D: Minimum distance map predictions.  

E, F: Connected regions showing overlap with bounding boxes after threshold of C and D.  

G: Patch from the connected region center (as lumen centers) of E.  

H, I: Patches from two connected region centers from F.  
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J: Lumen centers of all slices form tracklets (x position vs z position). 

K: Tracklets after refinement. The longest tracklet (blue) on each side of the carotid artery is 

used as the centerline for segmentation. 

 

3.1.3 Tracklet refinement  

When no, or multiple, lumen centers were identified for some slices, a tracking method 

(tracklet refinement algorithm) was used to infer the missing centers or remove centers 

corresponding to veins/arteries not of interest. First, a series of closely matching (based on 

intensities along the path between centers) neighboring centers were defined as a short tracklet. 

All short tracklets formed a collection of 𝐾 = {𝑇ଵ, 𝑇ଶ, … , 𝑇௜} . Tracklet 𝑇௜  with 𝑧௧,௜ − 𝑧௛,௜ + 1 

neighboring centers was represented with head and tail centers 𝑇௜ = (𝒉௜, 𝒕௜) =

(ൣ𝑥௛,௜, 𝑦௛,௜, 𝑧௛,௜൧, ൣ𝑥௧,௜, 𝑦௧,௜, 𝑧௧,௜൧) . Short tracklets were then merged for longer tracklets by a 

connection loss 𝐿൫𝑇௜ , 𝑇௝൯ defined as the feature distance between head and tail of each pair of 

tracklets,  

 𝐿൫𝑇௜, 𝑇௝൯ = ቐ

∞, 𝑧௛,௜ > 𝑧௛,௝

ฬቚ𝐹(𝐶(𝒕௜)) − 𝐹 ቀ𝐶൫𝒉௝൯ቁቚฬ
ଶ

, 𝑧௛,௜ ≤ 𝑧௛,௝

. (3.1) 

𝐶 is a function to crop the in-plane image patch of 128*128 at the center of 𝒉 or 𝒕. 𝐹 is a CNN 

feature extraction network with 5 convolution layers, 5 max pooling layers, and a fully connected 

layer of 64 nodes as the output. Triplet loss [60] 𝐿௧(𝐴, 𝑃, 𝑁) was used to train the feature extraction 

network, where the anchor and positive patches were extracted from ground truth lumen centers 

at the head and tail of the tracklets, and the negative patch was extracted from the same slice as 

the positive patch but at (one of) the center(s) of connected component(s) not encompassing lumen 

centers (an example is shown in Figure 3.3). 

 𝐿௧(𝐴, 𝑃, 𝑁) = max ቀห|𝐹(𝐴) − 𝐹(𝑃)|ห
ଶ

− ห|𝐹(𝐴) − 𝐹(𝑁)|ห
ଶ

+∝ ,0ቁ (3.2) 
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∝ is the margin between positive and negative pairs. The default value of 0.4 was used for ∝ 

in this study.  

 

Figure 3.3 Feature extraction network and triplet loss for identifying pairs of tracklets to 

merge.  

An anchor image patch (middle) was selected for training, along with a positive patch (top) 

from the same centerline and a negative patch (bottom) from a different centerline. Number of 

kernels are shown in each convolution layer. 

 

Tracklets were pairwise calculated for connection losses, and the pair (𝑖, 𝑗)  with mutual 

minimum loss among all merge options were connected. min௜൛𝐿൫𝑇௜, 𝑇௝൯ห𝑇௝ ∈ 𝐾ൟ =

min௝ {𝐿൫𝑇௜, 𝑇௝൯|𝑇௜ ∈ 𝐾}. During tracklet merging, missing lumen centers between slice 𝑧௛,௜ and 

𝑧௛,௝ were linearly interpolated by 𝑇௜, 𝑇௝. Center confidence scores within the tracklet were summed 

up, and the tracklets with the top score on each side of the carotid artery were considered as the 
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target centerline. An example of using tracklet refinement to find the centerline when there are 

multiple centers for connection is shown in Figure 3.2 J K.  

3.1.4 Experimental results 

We applied the method on a carotid dataset, which included T1-weighted (T1W) carotid artery 

images of 954 patients with recent ischemic stroke or transient ischemia attack, which were 

collected from the CARE-II study from multiple sites across China [61], and 203 asymptomatic 

subjects from a clinical trial (NCT00851500; http://clinicaltrials.gov) for the Kowa Research 

Institute [62], [63]. Vessel wall contours were traced manually by trained reviewers with >3 years’ 

experience in cardiovascular MR imaging using a custom-designed software package 

(CASCADE) [64]. Then the minimum encompassing boxes were derived to use as labels.  

For the centerline evaluation, mean absolute distance (MAD) between predicted lumen 

centers with ground truth centers, number of false negatives (no lumen center in a slice) and false 

positives (more than one center in a slice) were calculated before and after the tracklet refinement. 

The centerline evaluation results are shown in Table 3.1, after tracklet refinement, 31 (0.9%) 

FN centers and 211 (6.2%) FP centers from the carotid dataset were all corrected. The MAD 

improved from 2.60 to 1.58 pixels. 

 

Table 3.1 Centerline generation performance before and after the tracklet refinement. 

  MAD (pixel) # FN # FP 
Carotid 
N=3406 

Before 
refinement 

2.60 31 (0.9%) 211 (6.2%) 

After 
refinement 

1.58 0 (0.0%) 0 (0.0%) 
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3.1.5 Summary 

The tracklet refinement approach is able to identify artery centerlines in an efficient 

framework. The approach is robust enough to handle missing and wrong artery detections by 

taking advantages of neighboring slice information, while the most significant limitation for this 

approach is its assumption that arteries are relatively straight.  

More details of this approach can be found in our publication [53]. 

3.2 ICAFE FOR ARTERY TRACING AND LABELING 

Compared with relatively straight carotid arteries, intracranial vasculature is much more 

challenging to generate centerlines, due to the smaller and more tortuous artery structures. To 

generate accurate artery centerlines, we developed a semi-automated intraCranial artery feature 

extraction (iCafe) technique [48]. Human is allowed to edit the automated tracing and labeling 

results from 3D MRA images in a graphical user interface (GUI). The workflow of iCafe is shown 

in Figure 3.4. 

 
Figure 3.4 Workflow for iCafe (intraCranial artery feature extraction) 

 

3.2.1 Image preprocessing 

The original images were resliced in the axial direction of image acquisition using bi-cubic 

interpolation with isotropic resolution in 3D space. The absolute intensity values of MR images 
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do not have a fixed meaning, so a fast and accurate intensity normalization method by Nyul [65] 

is used to adjust intensities among cases in the database.  

3.2.2 Rudimentary segmentation 

For images with excessive noises hindering 3D visualization, a rudimentary segmentation of 

the artery region by the Phansalkar local threshold method [66] was optionally applied before 

artery tracing. The Phansalkar method was used due to its local thresholding ability with minimum 

loss of vascular regions in a reasonable processing time.  

3.2.3 Artery tracing 

Artery tracing represents arteries into radius varying tubes in the 3D space so that quantitative 

vascular features can be calculated. The open-curve active contour algorithm [24] originally 

designed for neural fiber tracing, was adapted for artery tracing in iCafe. Considering the different 

nature in arteries compared to neurons, for example, bifurcations are frequent in vasculature, but 

the areas near bifurcation are not enhanced in the vesselness image (Frangi vesselness filtered 

[67]), causing traces to be aborted near bifurcations, a combined tracing approach with both 

original image and vesselness image was used for artery tracing in iCafe. In the first stage, the 

tracing process started stretching from the seed point selected from centers of high intensity 

regions from the vesselness image. The current length of traced artery was calculated in each 

iteration. If the length increased slower than a preset threshold after an iteration, the trace was then 

stretched based on the raw image instead as a second stage until the length increase was below the 

threshold after an iteration again or until a maximum iteration number was reached. During each 

iteration, the radius on each point in the centerline was estimated using the method described in 

[19], where combined maximum gradients in eight directions were found at the radius boundary. 
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Manual editing was needed to correct the tracing errors in order to get the most accurate artery 

structures. A user-friendly GUI was provided (Figure 3.5) with five visualization methods 

(maximum intensity projection (MIP) view, 3D view, cross-section (CS) view, slice view, and 

multiplanar reformatted (MPR) view) for easier observation of artery details for human operators 

(Figure 3.6). The human correction time varies depending on complexity of data ranging from 20 

minutes to one hour. 

.   

Figure 3.5 iCafe user interface with constructed intracranial artery centerlines displayed in 

3D view. 

 

 
Figure 3.6 Different views for artery visualization in iCafe. Position and artery radius are 

linked in each view. 
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3.2.4 Artery labeling 

An automated artery labeling method based on Maximum a Posteriori (MAP) estimation was 

used [55]. Before artery labeling, 31 types of bifurcations of Interest (BoI) were identified based 

on a probability model using the positional, directional and topological [68] features. Each artery 

could be labeled after all BoI types were assigned. Manual corrections were needed when there 

were mistakes in automated artery labeling. 

3.2.5 Feature extraction 

The twelve morphometric features (length, volume, tortuosity, etc.) and sixteen intensity 

features (max, min, average intensity) from each artery can be calculated from the generated artery 

centerline. With artery labels, arteries with similar geometric and anatomical properties can be 

further grouped based on anatomy and flow distribution, such as distal branch length, and total 

volume in anterior circulation. A total of 1456 vascular features per scan can be extracted using 

iCafe. 

All the vascular features were well managed under a MySQL database retrievable through 

customized scripts. 

3.2.6 Summary 

The iCafe approach is able to generate artery centerlines and label arteries in a human-

supervised semi-automated workflow. The benefits of using iCafe is its high accuracy and 

extensive vascular features available compared with existing artery tracing and feature extraction 

tools, but the accuracy comes with intensive human editing. Although iCafe analysis is time 

consuming, when enough cases with good quality labels are generated, this new artery tracing and 
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labeling dataset (1000+ cases) becomes valuable not only for various medical research but also for 

developing AI models to automate the artery analysis workflow (section 3.3 and 3.4).  

More details of this approach can be found in our publication [48]. 

3.3 DEEP OPEN SNAKE TRACKER (DOST) FOR ARTERY TRACING 

iCafe provides a solution for artery centerline generation with more complex structures at the cost 

of more human supervisions. Based on existing large datasets of iCafe processed results, we 

proposed a deep learning based active contour model called Deep Open Snake Tracker (DOST) 

for automated artery tracing.  

DOST includes three key steps: curve proposal from centerline segmentation, deep snake 

tracing, and global tree construction (Figure 3.7).  

 
Figure 3.7 Workflow of Deep Open Snake Tracker (DOST).  

Centerlines for arteries were identified by a centerline segmentation CNN and skeletonized 

into pieces of 1-voxel thin vessel curves, which were used as the initial traces for deep snake 

tracing. CNN predicted the stretching directions and radii for both ends of the snake while trace 
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smoothness and fitness to image intensities were maintained. Then a graph model was used to 

select and construct a topologically correct vascular tree. 

 

3.3.1 Curve proposal 

Instead of seed points [19], [22], DOST initializes from vessel curves predicted from the 

centerline segmentation, which better utilizes vascular structures from segmentation-based 

tracking methods to avoid initial stretching errors. A 3D patch-based encoder-decoder centerline 

segmentation network (2 blocks in encoder/decoder, each with two 3D convolutional layers + 

RELU followed by 3D max pooling/up sampling layers) was used for segmentation on the vascular 

images. To separate the nearby vessels, the centerline distance transform [18] was used to map the 

vascular regions with continuous values according to the distance to the centerline. Each voxel at 

𝒑 = [𝒙, 𝒚, 𝒛] within the radius (𝑟௜,୩) of the artery 𝑖 at the 𝑘 th point was transformed into a labeled 

distance map 𝑑, where centerlines voxels had highest values.  

 𝑑[𝑥, 𝑦, 𝑧] = max
௜

  max
௞

ቆ
୫ୟ୶ (଴,௥೔,ౡିቚห𝒑೔,ౡି𝒑หቚ)

௥೔,ౡ
ቇ (3.3) 

Considering the majority of 𝑑 is zeros. The L2 loss for training the segmentation network is 

masked by the non-zero regions in 𝑑. 𝟏(∙) is an indication function. 

 𝐿𝑜𝑠𝑠௦௘௚ = |ห𝟏(𝑑[𝑥, 𝑦, 𝑧] ≠ 0)(𝑑[𝑥, 𝑦, 𝑧] − 𝑑መ[𝑥, 𝑦, 𝑧])ห|ଶ (3.4) 

Threshold after segmentation was chosen (from the validation set) to make binary predictions. 

Zhang’s skeletonization algorithm [69] was applied to identify initial curves (grouped if voxels 

were 26-connected) for tracing.  
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3.3.2 Deep snake tracing 

An initial curve 𝒄(𝑠)  was represented as a parametric open curve model 

൫𝑥(𝑠), 𝑦(𝑠), 𝑧(𝑠)൯, 𝑠 ∈ [0,1]  The snake energy used in DOST (𝐸஽ைௌ்) was a combination of the 

internal energy 𝐸௜௡௧ and the external energy of 𝐸௘௫௧ 

 𝐸஽ைௌ் =  ∫ 𝐸௜௡௧(𝒄(𝑠))
ଵ

଴
+ 𝐸௘௫௧൫𝒄(𝑠)൯ 𝑑𝑠 (3.5) 

 𝐸௜௡௧൫𝑐(𝑠)൯ = 𝛼(𝑠)|𝒄௦(𝑠)|ଶ + 𝛽(𝑠)|𝒄௦௦(𝑠)|ଶ (3.6) 

“Elasticity” 𝛼(𝑠) and “stiffness” 𝛽(𝑠) of the snake were set to be zero at 𝑠 = 0 𝑜𝑟 1 to allow 

snake stretching. 𝑐௦ and 𝑐௦௦ indicate first and second order derivatives. 

 𝐸௘௫௧൫𝑐(𝑠)൯ = −𝐼൫𝑥(𝑠), 𝑦(𝑠), 𝑧(𝑠)൯ + 𝐸௦௧௥(𝒄(𝑠)) (3.7) 

𝐼 is the image intensity. 𝐸௦௧௥ is the energy for stretching directions at both ends of the snake. 

𝐸௦௧௥൫𝒄(𝑠)൯ = 0 for points other than both ends.  

Different from the open curve snake (OCS), the stretching directions at the end of the snake 

were predicted from a deep neural network following the settings from the CNN tracker [22]. The 

network structure has 6 blocks followed by a convolution layer with 𝐷 + 1 dimensions (𝐷 = 500), 

each block was a 3D convolutional layer + batch normalization + RELU. A 3D image patch 

𝑃(𝒄(𝑠)) with the size of 193 (large enough to cover the vessel diameter) was extracted centered at 

𝒄(𝑠), 𝑠 = 0, 1 for prediction of the 1-dimensional radius 𝑟(𝑃(𝒄(𝑠))) and D-dimensional stretching 

direction 𝒗௠ୀଵ,ଶ,..,஽(𝑃(𝒄(𝑠))) by the network. The predicted stretching magnitudes {𝑘௠} has 𝐷 

dimensions indicating evenly distributed 3D unit directions 𝒗௠. The training targets for each patch 

were generated from semi-automatedly traced arteries using iCafe[48].  

 ∇𝐸௦௧௥൫𝑐(𝑠)൯ =  − ൞

max
௠

(𝑠𝑖𝑔𝑛(−𝒄௦(𝑠) ∙ 𝒗௠) ∙ 𝑘௠) , s = 0

max
௠

(𝑠𝑖𝑔𝑛(𝒄௦(𝑠) ∙ 𝒗௠) ∙ 𝑘௠) , 𝑠 = 1

0, 0 < 𝑠 < 1

 (3.8)  
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The directions of −𝒄௦(𝑠)|𝑠 = 0 and 𝒄௦(𝑠)|𝑠 = 1 pointed outward from the curve, indicating 

the correct stretching directions for 𝒗௠ to stretch the snake.  

3.3.3 Global tree construction  

Snakes were traced independently. In each iteration for a snake tracing, the snake stretches at 

both ends with the step size of 𝛾 = 0.5𝑟(𝑃(𝒄(𝑠))) with minimized snake energy, then resampled 

evenly for the next iteration.  

Snake stretching will terminate either when a snake end point reached another traced snake 

or the predicted direction 𝒗௠  can no longer predict a confident direction indicated by the 

normalized entropy [22]. 

 𝐻 =
∑ ି௞೘∙௟௢௚మ(௞೘)೘

௟௢௚మ(஽)
 (3.9)  

 

Deep snake tracing can reliably trace individual arteries. However, traces were not connected 

with each other through merging or branching to form a topologically meaningful vascular tree. 

To solve this issue, the global constraint on tree structure (no loop) was used to fix connection 

errors in tracing. On rare occasions when loops naturally exist, such as in individuals with 

collateral arteries or with a complete circle of Willis, a manual step of loop reconnection is needed.  

The vascular tree was constructed using an undirected snake graph, in which vertices 

indicated snakes, and edges between vertices indicated the connection loss 𝐿𝑜𝑠𝑠௖௢௡(𝑖, 𝑗) for the 

snake pair 𝑖, 𝑗 (through merging or branching).  

The connection loss 𝐿𝑜𝑠𝑠௖௢௡(𝑖, 𝑗) was based on intensities of point list 𝑡௜,௝ from two snakes 

𝒄௜ ∪ 𝒄௝  and their gap 𝑔௜ (minimum distance from one point of the snake to any point on the other 

snake). Foreground intensities for the snake pair were estimated with normal distributions 𝑁௜೑,ఋ೑
. 
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𝑖௙ , 𝛿௙  were mean and standard deviation of intensity along 𝑡௜,௝ . Background intensities for the 

snake pair were sampled from points at twice the radius around 𝑡௜,௝  with normal distributions 

𝑁௜್,ఋ್
. 𝑖௕, 𝛿௕ were mean and standard deviation of background intensities. Mean intensity along 𝑔௜ 

was 𝑖௚.  

 𝐿𝑜𝑠𝑠௖௢௡(𝑖, 𝑗) =
ே೔೑,ഃ೑

(௜೒)

ே೔೑,ഃ೑
൫௜೒൯ାே೔್,ഃ್

(௜೒)
  (3.10)  

When 𝐿𝑜𝑠𝑠௖௢௡(𝑖, 𝑗) was below the threshold of 0.05 or the gap was above the maximum 

distance for connection consideration (10mm), edges were removed from the graph. Parameters 

were empirically chosen for the best vascular tree construction.  

Kruskal’s algorithm [70] was used for minimum spanning tree (MST) construction from the 

snake graph with connection losses. Edges in MST were used to fill the gaps for snakes to construct 

a whole vascular tree. 

3.3.4 Evaluations 

We used the BRAVE dataset [71], [72] with 167 TOF MRA from elderly hypertensive 

subjects to evaluate DOST comparing with state-of-the-art methods. To evaluate the robustness of 

DOST on more vascular beds and imaging modalities, we used 1) the Rotterdam Coronary Artery 

Challenge (CAT08): eight CTA scans for coronary artery tracing [73], and 2) Harborview dataset: 

clinical scans with MR vessel wall imaging using T1 SPACE (black blood) from 15 patients with 

history of stroke. Detailed dataset properties are described in Table 3.2. Ethics approval was 

waived due to the retrospective study design. 
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Table 3.2 Detailed properties for datasets used in DOST evaluation. 

 

Number of 
training/vali
dation/teat 

cases 

Modality 
Vascular 

beds 

Blood 
intensity in 

images 

Interpolated 
in-plane 

resolution 
(mm) 

BRAVE 117/25/25 TOF MRA Intracranial Bright 0.43 

CAT08 6/1/1 CTA Coronary Black 0.36 

Harborview 5/5/5 
MR VWI 

(T1 SPACE) 
Intracranial Bright 0.56 

 

Ground truth for CAT08 was provided. For other datasets, arteries were automatically 

generated by the OCS and manually corrected in iCafe [48], [74].  

We evaluated the tracing accuracy following the metrics used in the CAT08 Challenge [73], 

including Average inside (AI) and Overlap (OV). However, AI and OV mainly evaluate centerline 

overlap for a single artery and cannot reflect the multi-vessel connection accuracy. For example, 

a vessel matched by two traces (Figure 3.8) has 100% OV but gets no penalties on additional 

broken predictions. 

 

Figure 3.8 An example when overlap measures are high but traced by multiple traces. 

 
 

Thus following multiple object tracking tasks [75], we adopted three 3D multi-vessel 

connection accuracy metrics: ID switch (IDS), multiple object tracking accuracy (MOTA) and 

IDF1 metrics to evaluate connection errors in vessel tracing.  

The tracing target for each scan in our task is a constructed snake list 𝑇 = {𝑡௜, 𝑖 = 1,2, … , 𝑁} 

with 𝑁 traces.  Ground truth labels are annotated with hat symbols, for example, 𝑇෠ . After {𝑡௜} were 
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matched (𝑚𝑖𝑛௜,௞ (||𝒑௜,௞ − 𝒑ෝ௜,௞|| < �̂�௜,୩)) with {�̂�௜}, for each �̂�௜, ID switch 𝐼𝐷𝑆௜ was defined as the 

additional count of sources from the predicted {𝑡௜}.  𝑇𝑃 was the number of {�̂�௜} having matching 

𝑡௜, 𝐹𝑁 was the number of {�̂�௜} having no matching 𝑡௜, and 𝐹𝑃 was the number of {𝑡௜} having no 

matching �̂�௜. 𝑇 was the number of points in {�̂�௜}. 𝑀𝑂𝑇𝐴 penalizes 𝐹𝑃, 𝐹𝑁 as well as IDS, leading 

to the best possible value of 1. 𝐼𝐷𝐹1 is the F1 score for artery matching ranging from 0 to 1, with 

lower score either by larger 𝐹𝑃 or 𝐹𝑁.  

 𝐼𝐷𝑆 = ∑ 𝐼𝐷𝑆௜௜   (3.11)  

 𝑀𝑂𝑇𝐴 = 1 −
ிேାி௉ାூ஽ௌ

்
  (3.12)  

 𝐼𝐷𝐹1 =
ଶ∙்௉

ଶ∙்௉ାி௉ାிே
  (3.13)  

3.3.5 Experimental results 

Comprehensive quantitative comparisons with DOST were made with traditional and deep learning 

methods. For segmentation-based approaches, Frangi vesselness filter [67], U-Net [58] and Deep 

Distance Transform (DDT) [18] were selected. For tracking-based approaches, OCS [24], CNN-

tracker [22] and Discriminative Coronary Artery Tracking (DCAT)[23] were selected. Results 

were shown in Table 3.3. 

 

Table 3.3 Quantitative comparison results for intracranial artery tracing 

Tracing approach 
Model 
name 

OV↑ AI↓ MOTA↑ IDF1↑ IDS↓ 

Traditional 
segmentation 

Frangi 0.617 0.956 0.238 0.621 343.9 

Deep learning 
segmentation 

U-Net 0.662 0.724 0.300 0.696 398.3 

Deep learning 
segmentation 

DDT 0.683 0.703 0.281 0.712 423.0 

Traditional tracking OCS* 0.672 0.356 0.372 0.694 74.8 
Deep learning 

tracking 
CNN 

tracker 
0.562 0.860 -0.312 0.595 108.5 
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Deep learning 
tracking 

DCAT 0.564 0.943 -0.241 0.601 137.8 

Hybrid 
DOST 
(Our) 

0.732 0.592 0.318 0.731 104.1 

* Ground truth was modified manually based on OCS results 
 

DOST showed higher performance than most methods. Note that the ground truth was 

generated based on OCS, which was a natural bias. An example of artery tracing on an MRA data 

is shown in Figure 3.9. 

 
Figure 3.9 An example of artery tracing for comparison.  

DOST did not have the problem in segmentation-based method for broken arteries, and it 

considered global tree structures in tracing, thus avoiding loops or many noise branches.  

 

3.3.6 Summary 

A deep learning based open curve snake model (DOST) was developed and evaluated. DOST 

combines deep learning-based direction prediction/radius estimation and the classic parametric 

curve modeling. It allows data driven machine learning knowledge to complement human prior 

knowledge on the structure of vessels (smoothness and stretchiness) and the topology of the 



 

 

37

vasculature, so that DOST out-performed existing models with either human or machine 

knowledge. In addition, DOST, as an adaptive hybrid (segmentation and tracking-based) tracing 

method, is able to identify complete vascular trees from multiple vascular beds and modalities. 

The main limitation of DOST is its requirement of supervised training to get the initial curve 

proposals and predict stretching directions. The training labels requires detailed semi-automated 

artery tracings[48]. However, we have demonstrated DOST works even with 6 cases in CAT08 

and 5 cases in Harborview dataset. 

More details of this approach can be found in our publication [56]. 

3.4 GRAPH NEURAL NETWORK + HIERARCHICAL REFINEMENT FOR ARTERY 

LABELING 

Labeling arteries after tracing is a necessary step to identify region of interest, as well as to 

calculate region based vascular features. This task is especially challenging when there is a 

complex structure of vasculature such as intracranial arteries. Substantial variations of intracranial 

arteries exist among individuals that are either healthy or associated with vascular disease [76]–

[78], which makes automated artery labeling challenging. 

The Graph Neural Network (GNN) is an emerging network structure recently attracted 

significant interest [79], [80], including applications on vasculature [81], [82]. By passing 

information between nodes and edges within the graph, useful properties for the graph can be 

predicted. Considering the graph topology in anatomical structures of intracranial arteries, we 

propose a GNN model with hierarchical refinement (HR), aiming to overcome the challenges in 

arterial labeling by training with large and diversely labeled datasets (more than 500 scans in the 

training set from multiple sources) and applying refinements after network predictions to combine 

prior knowledge on intracranial arteries.  
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3.4.1 Graph neural network 

The intracranial artery network is represented as the centerlines of arteries, each with 

consecutively connected 3D points with radius. Centerlines in one MRA scan are constructed as 

an attributed relational graph 𝐺 = (𝑉, 𝐸). 𝑉 = {𝒗௜} represents all unique points in the centerlines 

with node features of 𝒗௜ , and 𝐸 = {𝒆௞ , 𝑟௞, 𝑠௞}  represents all point connections where edge 𝑘 

connects between the node index 𝑟௞, 𝑠௞  with edge features of 𝒆௞ .  𝑒(𝑖)ଵ,…,஽(௜) are all the edges 

connected with node 𝑖 (𝑟௞ = 𝑖 or 𝑠௞ = 𝑖). 𝐷(𝑖) is the degree (number of neighbor nodes) of node 

𝑖. 

Features for node 𝒗௜ include 𝒑௜ for 𝑥, 𝑦, 𝑧 coordinates, 𝑟௜ for radius and 𝒃௜ for the directional 

embedding of the node. Due to the uncertain number of edges connected to the node, direction 

features cannot be directly used as an input in GNN. Here we use the multi-label binary encoding 

to represent direction features. First, 26 major directions in the 3D space are defined as 𝑛௨ =

(𝑥௨, 𝑦௨ , 𝑧௨)௨ୀଵ,…,ଶ଺, with 45 degrees apart in each axis, excluding duplicates. 

 ቐ

𝑥 = sin(45° ∗ 𝑎) ∗ cos(45° ∗ 𝑏)

𝑦 = cos(45° ∗ 𝑎) ∗ cos(45° ∗ 𝑏)

𝑧 = sin (45° ∗ 𝑏)
, 𝑎 ∈ {0, … ,7}, 𝑏 ∈ {−2, . . ,2}  (3.14)  

Then each edge direction (𝑥௩, 𝑦௩, 𝑧௩) originating from the node is matched with the major 

directions with 𝑑𝑖𝑟௩ =  𝑎𝑟𝑔𝑚𝑎𝑥௨(𝑥௨𝑥௩ + 𝑦௨𝑦௩ + 𝑧௨𝑧௩). 𝒃௜  is the 26-dimensional feature with 

encoded direction for all 𝑑𝑖𝑟௩. (an example in Figure 3.10) 
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Figure 3.10 Illustration of direction encoding as the node feature.  

Red, blue and green arrows indicate the edge directions for the node (bifurcation in this 

case). The closest major directions (with direction and id) are shown in black arrows near the 

edges. The indexes of these black arrows are used to construct the one hot encoding for this 

node. 

 

Features for edges 𝒆௞ include edge direction  𝒏௞ = (𝒑௦ೖ
− 𝒑௥ೖ

), which is then normalized 

(and inverted) so that ||𝒏௞|| = 1 and 𝑧௞ > 0; distance between nodes at two ends 𝑑௞ = ||𝒑௦ೖ
−

𝒑௥ೖ
||; and mean radius at two nodes �̅�௞ = (𝑟௦ೖ

+ 𝑟௥ೖ
)/2.  

With similar purpose of labeling using BoI instead of directly on arteries [30]–[32], we 

remove all nodes with a degree of 2 to reduce the graph size, as nodes requiring labeling are usually 

at bifurcations or ending points. If the remaining nodes are correctly predicted as one of the 21 

possible bifurcation/ending types, then the intracranial arteries (edges) can be labeled based on 

their connections.   

We implemented the GNN based on the message passing GNN framework proposed in [80], 

[83] to predict the types for each node and edge. The GNN takes a graph with node and edge 

features as input and returns a graph as output with additional features for node and edge types. 

The input features of edges and nodes in the graph are encoded to an embedding in the encoder 

layer. Then the core layer passes messages for 10 rounds by concatenating the encoder’s output 

with the previous output of the core layer. The embedding is restored to edge and node features in 
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the decoder layer with additional label features. Computation in each graph block is shown in 

equation (3.15). The edge attributes are updated through the per-edge “update” function ∅௘, and 

features for edges connected to the same node are “aggregated” through function 𝜌௘→௩ to update 

node features through the per-node “update” function ∅௩. The network structure is shown in Figure 

3.11. 

 ൞

 𝑢𝑝𝑑𝑎𝑡𝑒𝑑 𝑒𝑑𝑔𝑒 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠 𝒆௞
ᇱ = ∅௘൫𝒆௞, 𝒗௥ೖ

, 𝒗௦ೖ
൯

𝑢𝑝𝑑𝑎𝑡𝑒𝑑 𝑒𝑑𝑔𝑒 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠 𝑝𝑒𝑟 𝑛𝑜𝑑𝑒 𝒆ത௜
ᇱ = 𝜌௘→௩൫{(𝒆௞

ᇱ , 𝑟௞, 𝑠௞)}௥ೖୀ௜൯

𝑢𝑝𝑑𝑎𝑡𝑒𝑑 𝑛𝑜𝑑𝑒 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠 𝒗௜
ᇱ = ∅௩(𝒆ത௜

ᇱ, 𝒗௜)

  (3.15)  

 

 
Figure 3.11 GNN structure used in the artery labeling method.  

 
The artery names and abbreviations used in this labeling method is shown in Table 3.4. 

 
Table 3.4 Abbreviation and definition of intracranial arteries used in the artery labeling 

method. 

Abbreviati
on 

Artery Segment Definition 

ICA_L, 
ICA_R 

Internal Carotid Artery on 
left/right side 

Proximal to the bifurcation of ICA into M1 and 
A1 

M1_L, 
M1_R 

Middle Cerebral Artery on 
left/right side 

From the bifurcation of ICA to the first major 
bi(tri)furcation of MCA 

M2_L, 
M2_R 

The rest of the distal branches of MCA 

A1_L, 
A1_R 

Anterior Cerebral Artery on 
left/right side 

From the bifurcation of ICA to AComm 

A2_L, 
A2_R 

The rest of the distal branches of ACA (A2/3) 

AComm Anterior Communicating 
Artery 

The connecting segment between left and right 
A1 



 

 

41

VA_L, 
VA_R 

Vertebral Artery on left/right 
side 

Proximal to the converging point of left and right 
VA into BA 

BA Basilar Artery From the converging point of VAs to the 
bifurcation of BA into left and right PCA 

P1_L, 
P1_R 

Posterior Cerebral Arteries 
on left/right side 

From the bifurcation of BA to PComm 

P2_L, 
P2_R 

The rest of the distal branches of PCA (P2/3) 

PComm_
L, 

PComm_
R 

Posterior Communicating 
Arteries on left/right side 

The connecting segment between ipsilateral ICA 
and PCA 

OA_L, 
OA_R 

Ophthalmic Artery on 
left/right side 

The branch originating from the siphon of ICA 
coursing towards the eye 

 
Probability 𝑃௡௧(𝑖)  for node 𝑖  being bifurcation/ending type 𝑛𝑡 ∈

{0: 𝑁𝑜𝑛_𝑇𝑦𝑝𝑒, 1: 𝐼𝐶𝐴_𝑅𝑜𝑜𝑡_𝐿, … ,20: 𝐼𝐶𝐴_𝑃𝐶𝑜𝑚𝑚}  is calculated using a softmax function of 

GNN output 𝑂௡௧(𝑖). The predicted node type 𝑇௡(𝑖) is then identified by selecting the node type 

with the maximum probability. 

  𝑃௡௧(𝑖) =
௘ೀ೙೟(೔)

∑ ௘ೀ೙೟೔(೔)మబ
೙೟೔సబ

  (3.16)  

  𝑇௡(𝑖) = 𝑎𝑟𝑔𝑚𝑎𝑥௡௧(𝑃௡௧(𝑖))  (3.17)  

Similar for edges, 𝑒𝑡 ∈ {0: 𝑁𝑜𝑛_𝑇𝑦𝑝𝑒, 1: 𝐼𝐶𝐴_𝐿, … ,22: 𝑂𝐴_𝑅} , the edge probability and 

predicted edge type are  

  𝑃௘௧(𝑘) =
௘ೀ೐೟(ೖ)

∑ ௘ೀ೐೟೔(ೖ)మమ
೐೟೔సబ

  (3.18)  

  𝑇௘(𝑘) = 𝑎𝑟𝑔𝑚𝑎𝑥௘௧(𝑃௘௧(𝑘))  (3.19)  

Ground truth types for nodes and edges are 𝐺(𝑖), 𝐺(𝑘). 

The GNN was trained using combined weighted cross entropy losses in both nodes and edges, 

with weights inverse proportional to frequencies of the node and edge types. Batch size of 32 

graphs was used in training the GNN. Adam optimizer [84] was used for controlling the learning 
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rate. Positions of nodes from different datasets were normalized based on the imaging resolution, 

and a random translation of positions (within 10%) was used as the data augmentation method.  

3.4.2 Hierarchical refinement 

Predictions from the GNN might not be perfect, as end-to-end training cannot easily learn global 

intracranial artery structures and relations. Logically, human reviewers are likely to subdivide 

intracranial arteries into three sub-trees (i.e., left/right anterior, posterior cerebral trees), find key 

nodes (such as the bifurcation for ICA/MCA/ACA) in sub-trees, and then add additional sub-

branches more prone to variations (such as PComm, AComm). Enlighted by the sequential 

behavior during manual labeling, a hierarchical refinement (HR) framework based on GNN 

outputs is proposed to further improve the labeling. Starting from the most confident nodes, the 

three-level refinement is shown in Figure 3.12. 

 
Figure 3.12 Workflow of HR framework.  

In the first level (blue box), confident nodes (circle and square dots) are identified from the 

GNN outputs. In the second level (orange boxes), confident nodes as well as their inter-

connected edges in the left (blue lines)/right (red lines) anterior, posterior (green) sub-trees are 

identified. In the third level (grey boxes), optional nodes and edges (black lines) are added to 

each of the three sub-trees to form a complete artery tree.  
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Level one labeling. We consider nodes as confident if the predicted node type fits the 

predicted edge types in edges they are connected with. 

  𝐹൫{𝑇௘൫𝑒(𝑖)ଵ,…,஽(௜)൯}൯ = 𝑇௡(𝑖)  (3.20)  

𝐹 is a lookup table with human prior knowledge for all valid pairs of edge types and node 

types. For example, 𝐹(𝑃1_𝐿, 𝑃1_𝑅, 𝐵𝐴) = 𝑃𝐶𝐴/𝐵𝐴, 𝐹(𝐼𝐶𝐴_𝐿) = 𝐼𝐶𝐴_𝑅𝑂𝑂𝑇_𝐿.  

Level two labeling. From confident nodes, three sub-trees are built, and major-branch nodes 

are predicted in each sub-tree individually. Major node 𝑖  is defined as ICA/MCA/ACA (for 

anterior trees) and PCA/BA (for posterior trees), and branch nodes 𝒋 are defined as ICA_Root, 

M1/2, A1/2 (for anterior trees) and BA/VA, P1/2 (for posterior trees). If major nodes are not 

confident nodes in each sub-tree, they are predicted with type 𝑎𝑟𝑔𝑚𝑎𝑥௜ (𝑃௡௧೔
(𝑖)|𝐷(𝑖) ≠ 1) with 

additional constraints if branch nodes 𝒋 are confident (𝑖 ∉ 𝒋 and 𝑖 must be in the path between any 

pair of 𝒋). Then from the major node, all unconfident branch nodes are predicted using the target 

function of  

  ൞

𝑎𝑟𝑔𝑚𝑎𝑥𝒋  ൤𝑃௡௧𝒋
(𝒋) + 𝑃௘௧೐(೔)

൫𝑒(𝑖)ଵ,…,஽(௜)൯
௥೐(೔)ୀ𝒋,௦೐(೔)ୀ௜

൨ , 𝑖𝑓 𝑃௡௧೔
(𝑖) > 𝑇ℎ𝑟𝑒𝑠

𝑎𝑟𝑔𝑚𝑎𝑥𝒋  ൬𝑃௡௧𝒋
(𝒋)൰ , 𝑖𝑓 𝑃௡௧೔

(𝑖) < 𝑇ℎ𝑟𝑒𝑠 

  (3.21)  

On rare occasions, when the major nodes have a probability lower than a certain threshold 

𝑇ℎ𝑟𝑒𝑠 (when there are anatomical variations where major nodes do not exist), branch nodes are 

predicted without edge probability.  

If certain distance between the optimal 𝑖 and 𝒋 is beyond the mean plus 1.5 standard deviation 

of 𝐺(𝑘)|𝑟௞ = 𝒋, 𝑠௞ = 𝑖 from the training set, labeling on 𝒋 will be skipped and a node with a degree 

of 2 will be labeled so that its distance to node 𝑖 is closest to the mean distance of 𝐺(𝑘). This 

happens when there are missing Acomm or Pcomm.  
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Level three labeling. Optional branches are added to three sub-trees. M2+, A2+, and P2+ 

edges are assigned for all distal neighbors of M1/2, A1/2, P1/2 nodes. Based on node probabilities, 

OAs are identified on the path between ICA_Root and ICA/MCA/ACA nodes, Acomm is assigned 

if there is a connection between A1/2_L and A1/2_R, Pcomm is assigned if there is connection 

between P1/2 and ICA/MCA/ACA, VA_Root is predicted from neighbors of BA/VA. 

3.4.3 Datasets 

Five datasets from our previous research [50], [72], [85] were used to train and evaluate our 

method, then the generalizability was assessed on the public UNC dataset with/without further 

training. Details for the datasets are in Table 3.5. 

 

Table 3.5 Properties of datasets used in the artery labeling method. 

Datasets 

Number of 
scans 

(training/v
alidation/te

sting) 

In-plane 
resolution 

after 
interpolatio

n(mm) 

Coverage 
Scanner 

manufactur
er 

Health 
state 

Source of 
scan 

Our 1 117/25/25 0.352 

Partial 
brain 

centered at 
M1 

Philips Healthy 
Research 
project 

Our 2 117/25/25 0.430 
General 
Electric 

Hypertensi
on 

Research 
project 

Our 3 111/32/17 0.391 
General 
Electric 

Stroke 
Research 
project 

Our 4 111/24/28 0.400 Philips 
Parkinson 
Disease 

Clinical 
scan 

Our 5 46/10/10 0.469 
General 
Electric 

Dementia 
Clinical 

scan 

Public 
UNC 

0/0/41 0.513 
From M1 
to top of 

skull 
SIEMENS Healthy 

Research 
project 

 

 
Our five datasets were collected with different resolutions using different scanner 

manufacturers from different population, adding difficulties to artery labeling due to various levels 
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of traceable arteries, anatomical variations and disease related pathological changes. Subjects 

enrolled in the datasets include both healthy (no recent or chronic vascular disease) and with 

various vascular related diseases, such as recent stroke events and hypertension. All the datasets 

were randomly divided into a training set (508 scans), a validation set (116 scans) and a testing set 

(105 scans). If the subject had multiple scans, these scans were assigned into the same set. All 

scans from the UNC dataset (https://public.kitware.com/Wiki/TubeTK/Data, healthy volunteers) 

with publicly available artery traces (N=41) were used for further evaluations like previous studies 

[32], [33]. Generally, our dataset has more intracranial artery variations and more challenging 

anatomies than the UNC dataset.  

3.4.4 Evaluation  

Evaluation metrics. As our purpose is to label the intracranial arteries, the accuracy of 

predicted node labels is the primary metric for evaluation (Node_Acc). In addition, we also used 

number of wrongly predicted nodes per scan (Node_Wrong), edge accuracy (Edge_Acc) and the 

percent of scans with CoW nodes (ICA/MCA/ACA, PCA/BA, A1/2, P1/2/PComm, PComm/ICA), 

all nodes and all edges correctly predicted (CoW_Node_Solve, Node_Solve, Edge_Solve). For 

detailed analysis of detection performance on each bifurcation type, the detection accuracy, 

precision and recall for 7 major bifurcation types (ICA-OA, ICA-M1, ICA-PComm, ACA1-

AComA, M1-M2, VBA-PCA1, PCA1-PComA) were calculated. The processing time was also 

recorded. Due to the lack of criteria for labeling nodes with degrees of 2, nodes such as A1/2 

without AComm were excluded from the evaluation.  

Comparison methods. With the same artery traces of our dataset, three artery labeling 

methods introduced in section 2.2 [26], [28], [48] were used to compare the performance. Due to 

the unavailability of two methods using the UNC dataset, we only cite evaluation results from their 
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publications. Direction features and HR were sequentially added to our baseline model to evaluate 

the contribution of different features and the effectiveness of the HR framework. 

Ablation study. We compared the performance of GNN without HR (predicts node and edge 

types directly from the GNN outputs 𝑇௡(𝑖) and 𝑇௘(𝑘)). We further tested the removal of direction 

features. 

3.4.5 Experimental results 

In the testing set of our dataset, 1035 confident nodes (9.86/scan) were identified, and 5 of 

them (0.5%, none are major or branch nodes) were predicted wrongly, showing labeling of 

confident nodes is reliable, so that labeling in the following up levels in HR was meaningful. 

Examples of correctly labeling challenging cases are shown in Figure 3.13. Our method was 

robust, even with artificial noise branches added in the M1 branch shown in Figure 3.13 (d).  

 
Figure 3.13 Examples of challenging anatomical variations where our method predicted all 

arteries correctly.  

(a) A subject with Parkinson’s disease. Occlusions cause both right and left internal carotid 

arteries to be partially invisible. In addition, Pcomms are missing.  

(b) A hypertensive subject with rare A1_L artery missing, which is not among the 8 

anatomical types and thus not solvable in [32].  

(c) Some lenticulostriate arteries are visible in our dataset with higher resolution, an 

additional challenge for labeling, our method predicted it correctly as a non-type.  

(d) With more artificial lenticulostriate arteries added in the M1_L segment, our method is 

still robust to these additional noise branches. 
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The comparison with other artery labeling algorithms and the ablation study is shown in Table 

3.6. Our method demonstrates a better node accuracy of 97.5% with 3.0 wrong nodes/scan. Our 

method is the only one with cases where all nodes and edges were predicted correctly with the 

minimum processing time (less than 0.1 seconds). With direction features and the HR added to the 

baseline model, the performance is further improved. ICA-OA is the most accurately detected 

bifurcation type with detection accuracy of 96.2% while the challenging M1/2 has an accuracy of 

68.1%. Mean detection accuracy is 83.1%, precision is 91.3%, recall is 83.8%. 

 
Table 3.6 Comparison with existing methods and the ablation study on our testing set 

(N=105). 

Method Node_
Acc↑ 

Node_
Wrong

↓ 

Node_
Solve↑ 

CoW_
Node_
Solve↑ 

Edge_
Acc↑ 

Edge_
Solve↑ 

Process 
time 
(s) ↓ 

MAP [48] 0.9153 10.0 0 0.0476 0.3304 0 1.075 
Template [26] 0.7316 31.6 0 0.0476 0.7934 0 5.057 

Atlas [28] 0.8856 13.5 0 0.0095 0.7010 0 9.253 
GNN(Pos) 0.9553 5.3 0.0286 0.3524 0.9099 0 0.017 

GNN(Pos+Dir) 0.9637 4.3 0.0381 0.4286 0.9223 0 0.020 
GNN(Pos+Dir)+HR 0.9746 3.0 0.3238 0.6381 0.9246 0.3238 0.092 
 

Our labeling method showed good generalizability on the UNC dataset. Even without 

additional training on the UNC dataset, the node accuracy was 99.03% (2.0 wrong nodes/scan on 

all levels of labeling) with 56% of cases solved. Mean detection accuracy for all node types was 

92%. As a reference with methods using leave-one-out cross validation trained and evaluated using 

the same dataset, 58% of cases were solved [32]. The mean detection accuracies were 94% and 

95% in [32], [33], respectively. If trained in combination with the UNC dataset using three-fold 

cross validation, our method outperforms [32], [33]. 
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TABLE 3.7 Performance of detection accuracy (A), precision (P) and recall (R) for each 

bifurcation type, compared with previous methods using the UNC dataset.  

Note that our method is trained with our dataset with (GNN+HR+UNC) and without 

(GNN+HR) further training in the UNC dataset, but other methods were trained and evaluated by 

leave-one-out cross validation on the UNC dataset alone (more likely to overfit on the UNC 

dataset). 

Method GNN+HR (Ours) 
GNN+HR+UNC 

(Ours) 
Robben [33] Bogunović [32] 

 A P R A P R P R R A P R 
ICA-OA 97 100 97 100 100 100 99 99 100 99 100 99 
ICA-M1 90 96 93 95 97 97 100 100 100 99 99 100 

ICA-
PComm 

88 97 89 95 97 97 98 100 98 93 94 96 

ACA1-
AComA 

95 100 95 96 100 96 96 100 95 92 93 97 

M1-M2 90 95 95 95 97 97 78 78 100 89 89 100 
VBA-
PCA1 

94 97 97 90 94 94 90 98 91 94 100 93 

PCA1-
PComm 

90 97 92 92 98 94 95 100 92 96 100 94 

Mean 92 97 94 95 97 97 94 96 97 95 96 97 
 

3.4.6 Summary 

We have developed a GNN approach to label intracranial arteries with HR on our comprehensive 

intracranial artery labeling dataset (729 scans). In addition to its superior performance compared 

with methods described in the literature, our work shows robustness and generalizability on 

various challenging anatomical variations. 

Four contributions and novelties in our work are worth highlighting. 1) The dataset includes 

more diverse and challenging intracranial artery variations compared with the existing UNC 

dataset, which is better suited to evaluate labeling performance. 2) The GNN and HR framework 

is an ideal method to learn from the graph representation of intracranial arteries and incorporate 

prior knowledge about intracranial artery structure. 3) With accurate predictions of 20 node and 
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22 edge types covering all major artery branches visible in MRA, this method can automatically 

provide comprehensive features for detailed analysis of cerebral flow and structures in less than 

0.1 seconds. 4) It should also be noted that our GNN and HR framework is not only applicable to 

intracranial arteries, but also to any graph structures where sequential labeling helps.  

More details of this approach can be found in our publication [52]. 

3.5 ARTERY REFINEMENT ON TRACES FROM LOW QUALITY IMAGES 

Arteries are long tubular structures. By knowing this property, the traces can be further refined, 

which can be especially useful when image quality is poor, for example, motion affected infant 

MRA. Construction of the straightened curve planar reformation (CPR) view is an ideal image 

conversion method to represent and refine arteries, as the vertical axis of straightened CPR 

represents longitudinal direction of an artery and the horizontal axis represents one of the profiles 

in neighboring cross-sectional planes. An example of straightened CPR view of an intracranial 

artery is shown in Figure 3.14. 
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Figure 3.14 MIP and straightened CPR view of an example artery. 

Left: MIP view with selected trace in blue. Right: straightened CPR view at angles of 0, 45, 

90, and 135°. The radius along the centerline is shown in blue in the straightened CPR 135°

angle image. 

 

An artery refinement algorithm was developed and validated for robust quantification of 

intracranial vasculature from MRA in this section (extensible to other MRI sequences) using the 

straightened CPR. The refinement includes adjustments on centerline positions, lumen radii and 

centerline deviations, so that smooth artery traces are following vascular regions with radius fitting 

lumen boundaries. 

3.5.1 Artery refinement algorithm 

For an individual artery trace, the refinement algorithm uses both the signal intensity gradient 

from the cross-sectional plane and neighboring information along the centerline, to improve artery 

boundary delineation and radius smoothness. First, a straightened CPR view is generated. Then, 
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the artery tracing is optimized in three stages: 1) trace position optimization, 2) trace radius 

optimization, and 3) trace deviation correction. 

Straightened CPR view generation. The directions along the centerline can be represented 

as normal vectors 𝒏௜ = (𝑥௜, 𝑦௜, 𝑧௜). Based on the orthogonal relations of normal directions and 

coordinate axes, the cross-sectional plane 𝐶௜(u, v) = (u ∙ (𝑥௨, 𝑦௨ , 𝑧௨), v ∙ (𝑥௩, 𝑦௩, 𝑧௩)) for normal 

direction 𝒏௜ can be generated from 
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  (3.22)  

 

when 𝑦௜ and 𝑧௜ are not zero at the same time. An illustrative graph is shown in Figure 3.15. 
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Figure 3.15 Illustration graph for straightened CPR view generation.  

(a) a cross-sectional plane (blue rectangle) at center position 𝐩୨ is defined by normal vector 

𝐧୧, any target position can be defined in the cross-sectional plane by two orthogonal vectors u 

and v.  

(b) interpolated normal direction at the position between two center positions is the linear 

interpolation between two neighboring normal vectors 𝐩୨and 𝐩୨ାଵ according to their distances to 

center positions. 

 
As the cross-sectional plane to a normal vector is not unique, 𝑥௩ = 0 is chosen as one of the 

planes for convenience. Linear interpolation is used for fast generation of the cross-sectional plane 

of the image. 

The straightened CPR image 𝑀(𝑢, 𝑣) is generated as follows: v is the accumulated distance 

from the starting point of the trace, somewhere on the centerline between 𝒑𝒋  and 𝒑𝒋ା𝟏 , with 

distances of 𝑑ଵ and 𝑑ଶ, the interpolated normal direction 𝒏ෝ௜ =
ௗభ

ௗభାௗమ
𝒏௝ +

ௗమ

ௗభାௗమ
𝒏௝ାଵ. 𝑀(𝑢, 𝑣 =

𝑣௝) is the 𝐶௜(𝑢 = cos (𝜃), 𝑣 = sin(𝜃)) derived from equation (1), where 𝜃  is the rotated view 

angle for the straightened CPR image. 
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As an example, straightened CPR views for one segment that includes the internal carotid 

artery and the middle cerebral artery viewed at 0, 45, 90, and 135 degrees are shown in Figure 

3.14.   

Trace position refinement. The 3D position of points in the trace is refined using the 

optimization function considering losses for trace smoothness and their intensity. 

  𝐿ଵ(𝒑) = ∑ 𝐿ଵ(𝒑௜)௜  

= ∑ {𝑤ௗ௜௦௧ ൬||𝒅௜||
(ଵ) + 𝛾||𝒅௜||(ଶ) + 𝛾ቀ𝑑௫,௜

(ଶ)
+ 𝑑௬,௜

(ଶ)
+ 𝑑௭,௜

(ଶ)
ቁ൰ − 𝑤௜௡௧[𝐼௡(𝒑௜) + 𝐼௦(𝒑௜)]}௜   (3.23)  

where the directional vector between two center points 𝒅௜ = (𝒑௜ − 𝒑௜ିଵ) = (𝑑௫,௜, 𝑑௬,௜, 𝑑௭,௜), and 

||𝒅௜|| denotes the length of the vector; 𝐼௡(𝒑) and 𝐼௦(𝒑) are intensity values of normalized (𝑀௡) 

and segmented (𝑀௦) straightened CPR images at position of 𝒑௜ = (𝑥௜, 𝑦௜, 𝑧௜). (1) and (2) represent 

1st and 2nd order of derivative. Minimizing the derivative of the length of the distance vector 

ensures the even distribution of center points along the centerline, and minimizing the derivative 

of the x, y, z coordinates help to ensure the smooth coordinate transitions between neighboring 

center points. 𝛾 is the parameter to control the first and second order weights for derivatives, and 

is empirically chosen as 5, the same as the active contour models [86]. Maximizing the intensities 

of center points on normalized and segmented straightened CPR images restricts the center points 

on the foreground of vascular images (lumen region of arteries). 𝑤ௗ௜௦௧ = 0.02 and 𝑤௜௡௧ = 1 are 

weights for controlling the smoothness and intensity loss to the similar level.  

Trace radius refinement. After the trace position refinement, centerline positions are fixed, 

and the radius of each point is refined using the following equation. 

𝐿ଶ(𝒓) = ∑ 𝐿ଶ൫𝑢௟,௜, 𝑢௥,௜, 𝑣௜൯௜ = ∑ 𝐿ଶ(𝑙(𝑣௜), 𝑟(𝑣௜), 𝑣௜)௜ = ∑ 𝑤ୱ୫୭୭୲୦௜ ൣ𝑙(ଵ)(𝑣௜) + 𝑟(ଵ)(𝑣௜) +

𝛾𝑙(ଶ)(𝑣௜) + 𝛾𝑟(ଶ)(𝑣௜)൧ − 𝑤୥୰ୟୢ[𝑀௨(𝑙(𝑣௜), 𝑣௜) + 𝑀௨(𝑟(𝑣௜), 𝑣௜)]  (3.24)  
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where 𝑙(𝑣)  and 𝑟(𝑣)  are the left and right boundary for artery radius in straightened CPR 

image 𝑀௡. Minimizing the derivatives controls the smoothness of both sides of boundaries.  𝑀௨ is 

the derivative of 𝑀௡  in its horizontal direction. Maximizing the horizontal gradient intensity 

ensures the radius boundaries to fit the edge of luminal area in the arteries. 𝑤ୱ୫୭୭୲୦ = 1 and 

𝑤୥୰ୟୢ = 50 are weights for controlling the smoothness and gradient loss to the similar level.  

Trace deviation correction. Ideally, the mean location of the left and right radius boundaries 

௟(௨,௩)ା௥(௨,௩)

ଶ
 in the straightened CPR image should always be in the vertical center of the 

straightened CPR image (𝑣 = 𝑣௠). Any deviation away from the vertical center in 𝑢 direction 

𝒐=
௟(௩)ା௥(௩)

ଶ
− 𝑣௠ needs to be re-centered. 

Iterative optimization from different angles. Arteries are iteratively optimized using 

straightened CPR images 𝑀ௗ௘௚  generated from multiple rotation angles {0,90,45,135}. The 

optimization process was repeated 3 times for this study. The Nelder-Mead algorithm [87] was 

used for optimization. 

3.5.2 Validation and Reliability 

The algorithm was then applied to the repeated artery tracings of MRA scans for 5 infants and 5 

adults. As ground truth could not be determined, the measurement agreement for radii in selected 

arterial regions from the two repeated scans were compared before and after applying the 

refinement algorithm. Higher measurement agreement between repeated scans was considered to 

more accurately approximate the actual radius. Considering different tracing conditions, where the 

number of points in each segment and connection of segments in bifurcations are different, radii 

from selected locations on ICA, M1, M2 and M3 segments were manually chosen. One radius was 

selected as the sample in each segment when the segment could be matched on the second scan. 
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Sampled radii differences between the repeated scans, as well as intra-class correlation coefficient 

(ICC) and within-subject coefficient of variation (CV), were evaluated before and after the 

vascular refinement algorithm was applied.  

3.5.3 Experimental results 

The refinement algorithm was found to be effective at improving artery traces on 3D-TOF MRA 

images. In most cases, sudden changes of radius along the centerline, inaccurate radius boundary 

estimation due to weak MR signal, and tortuosity due to noise are minimized or resolved. One 

example from infants and one example from adults are shown in Figure 3.16. In this example, 

improvement in the delineation of arteries is visibly improved in a number of regions, including 

the sudden change of radius on the left side of the anterior cerebral artery and middle cerebral 

artery, and the right side of posterior cerebral artery, as pointed out by the red arrows. 
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Figure 3.16 Characteristic artery traces before and after vascular measurement refinement for 

an infant (top row) and adult (bottom row).  

Red arrows highlight several artery locations showing improvements.  

 
Comparison of quantitative metrics of vascular features between the two scans for each 

subject revealed that vascular measurement refinements for TOF MRA scans improved the 

measurement correlations for all ten subjects. Artery radius differences measured between two 

repeated scans were significantly reduced using the refinement algorithm for both infants (p = 

0.008) and adults (p = 0.048). ICC improved from 0.55 to 0.7 for infants, and from 0.59 to 0.92 
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for adults. CV decreased from 28.52% to 19.71% for infants, and from 26.65% to 11.01% for 

adults. Note that the adults had less motion and vascular pulsation than infants, so the artery 

boundary is sharper and more consistent between scans. 

3.5.4 Summary 

Limitations of imaging acquisition, as well as complications posed by specific patient populations 

(infants, for example), have substantially impacted the clinical reliability of the quantitative 

vasculature measurements. We present an artery refinement algorithm that uses straightened CPR 

to reduce measurement errors by incorporating both signal gradients and neighboring voxel 

information along the centerline.  

Measurement improvements provided by this approach have the potential to allow clinically 

useful vascular features to be more reliably and rapidly characterized and quantified in an objective 

manner. This vascular measurement refinement approach will facilitate new avenues of research 

for vascular imaging studies to explore brain vascular changes during early development and in 

the presence of vascular pathology. However, this method requires iterative process, thus requiring 

long processing time (about 20 minutes per case). So we currently only applies this refinement 

algorithm on challenging cases with low image quality and severe motion artifacts (such as infant 

scans). 

More details of this approach can be found in our publications [51], [54]. 

3.6 CLINICAL APPLICATIONS 

3.6.1 Validation of iCafe for quantifying artery structural features  

A series of validations are needed before iCafe can be used for clinical research. 1) whether the 

iCafe technique is accurate in feature quantification (point position, radius, length). 2) whether 
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MRA imaging is reliable for robust measurement of vasculature. 3) whether the semi-automated 

workflow of iCafe is repeatable for vascular image analysis.  

iCafe is accurate in feature quantification. iCafe is accurate from three validations. 

Compared with manual labels from an experienced neuroradiologist on eight example scans, iCafe 

can generate accurate branch bifurcations, detect location of stenosis (>10% narrowing), and 

accurately measure artery length. The mean deviation distance of bifurcation points (N=89) is 

0.328±0.444 millimeters, which is close to the image resolution of 0.297 millimeters per voxel. 

For the 13 stenosis locations identified by human, 11 are detected (sensitivity 11/13=85%), and 

two of the detected locations are not stenosis (precision of 11/13=85%). Arterial length 

measurements from iCafe are compared with measurements acquired from an established 

software, Philip Intellispace Portal Software (Philips Healthcare, Best, the Netherlands), showing 

an average difference between the two measures of 3.15% and intra-class correlation coefficient 

(ICC) of 0.97. 

MRA imaging is reliable for robust measurement of vasculature and iCafe is repeatable 

for vascular image analysis. A reproducibility study [49] is followed by the measurement 

validation of iCafe to answer the latter two questions. Twenty-four patients with known 

intracranial artery stenosis underwent two separate TOF MRA scans within 2 weeks of each other 

are processed using iCafe by the same operator for assessing the inter-scan reproducibility of eight 

representative vascular features. The first scans of eight subjects are reprocessed by the same 

operator for assessing the intra-operator reproducibility, and by a different operator for assessing 

the inter-operator reproducibility. The extracted vascular features show excellent inter-scan and 

intra-operator reproducibility (ICC = 0.91-1.00, and CV = 1.21-8.78% for all markers), and good 

to excellent inter-operator reproducibility (ICC = 0.76-0.99, and CV = 3.27-15.79% for all 
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markers). The good inter- and intra-operator reproducibility indicate the robustness of iCafe in 

extracting vascular features, and based on that, the excellent inter-scan reproducibility indicates 

the TOF MRA is reliable in imaging the artery structure and suitable for quantitative vascular 

feature extraction, which has not been extensively explored in the literature.   

More details of this study can be found in our publications [48], [74]. 

3.6.2 Vascular feature evaluation on aging population 

After validation and reproducibility assessments, iCafe has been extensively applied in dozens of 

clinical and research studies. One example is illustrated here where iCafe is used for cross-

sectional study on vasculature for exploring healthy aging [50].  

From a community study including 163 healthy subjects (age 56-85, mean 71, 74 males) from 

Beijing, China (the CROP study), we observe that reduced intracranial vasculature (represented as 

fewer number of branches and average artery order) and increased artery tortuosity are associated 

with healthy aging (p value <0.001 after adjustment for gender and traditional risk factors, shown 

in Table 3.8).  

 

Table 3.8 Associations between age and vascular features derived from all arteries after 

adjustments. 

 Adjusted only for sex* 
 (N=163) 

 Adjusted for sex and 
Traditional Risk Factors⊰ 

(N=155) 

 Adjusted for sex and 
Mean Carotid Wall 

Thickness‡ 
(N=140) 

Variable Partial 
r* 

(95% 
CI) 

P-value  Partial 
r⊰ 

(95% 
CI) 

P-value  Partial 
r‡ 

(95% 
CI) 

P-value 

Total length -0.18 (-0.31, 
-0.04) 

0.021  -0.16 (-0.29, 
-0.02) 

0.059  -0.17 (-0.31, 
-0.03) 

0.047 

Average 
diameter 

0.02 (-0.13, 
0.17) 

0.80  0.08 (-0.08, 
0.25) 

0.36  0.07 (-0.10, 
0.23) 

0.41 

Volume -0.14 (-0.27, 
-0.00) 

0.074  -0.08 (-0.22, 
0.08) 

0.35  -0.11 (-0.25, 
0.04) 

0.20 

Number of 
branches 

-0.38 (-0.49, 
-0.26) 

<0.001†  -0.34 (-0.47, 
-0.21) 

<0.001†  -0.38 (-0.50, 
-0.25) 

<0.001† 
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Average order -0.39 (-0.50, 
-0.27) 

<0.001†  -0.35 (-0.48, 
-0.21) 

<0.001†  -0.35 (-0.48, 
-0.22) 

<0.001† 

Average 
tortuosity 

0.27 (0.14, 
0.40) 

<0.001†  0.16 (0.02, 
0.30) 

0.056  0.28 (0.13, 
0.41) 

0.001† 

Average 
bifurcation 
angle 

-0.08 (-0.24, 
0.07) 

0.28  -0.15 (-0.30, 
0.00) 

0.078  -0.06 (-0.23, 
0.10) 

0.46 

Average 
normalized 
intensity 

0.01 (-0.13, 
0.16) 

0.86  0.04 (-0.14, 
0.19) 

0.62  0.07 (-0.10, 
0.23) 

0.44 

*The Partial Pearson correlation coefficient between the vascular feature and age, adjusted for sex; 
⊰The partial Pearson correlation coefficient between the vascular feature and age was adjusted for sex, BMI, hypertension, 
hyperlipidemia, diabetes, smoking history, blood pressure, LDL-C, HDL-C, and triglycerides in participants with complete 
clinical data; 
‡The partial Pearson correlation coefficient between the vascular feature and age was adjusted for sex and mean carotid vessel 
wall thickness in participants with carotid wall thickness measurements; 
†Statistically significant after accounting for the number of comparisons per model (Holm’s method). 

 

In addition to the global vasculature differences, with the help of 24 types of anatomical 

labeling of arteries, we identify the vascular changes are different on different areas of the 

intracranial vasculature. Only the distal branches show reduction and only the tortuosity in middle 

cerebral artery region (MCA) increase instead of all other cerebral regions through aging (scatter 

plots shown in Figure 3.17). 

 
Figure 3.17 Scatterplots of selected vascular features of the ACA (black), MCA (red), and 

PCA territories (blue) versus age.  

The least squares fits are indicated with the dashed lines. As summarized in Table 3, number 

of branches and average order of each territory were similarly significantly associated with age. 

However, tortuosity of the MCA was significantly more correlated with age than tortuosity of the 

other territories. 
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More details of this study can be found in our publication [50]. 

3.6.3 Other applications 

With accurate and unique vascular features, iCafe has been extensively applied in dozens of 

clinical and research studies. The vascular features indicating intracranial structure and blood flow 

have been used in multiple ways. Here we have an incomplete list of our previous and on-going 

studies. Details of each study can be found in corresponding references if more information is 

needed. 

 Identification of vasculature differences between dementia subjects with healthy controls [78]. 

 Quantitative monitoring cerebral blood flow before and after carotid revascularization surgery 

[85], [88]. 

 Validation of TOF MRA sequence reproducibility [49]. 

 Quantitative angiographic contrast mechanism analysis for MRA sequences [89]. 

 Collateral flow quantification in peripheral arteries [90]. 

 Exploration of medicine effect on intracranial arteries for Parkinson’s disease [91]. 

 Exploration of the relation between vascular features and hypertensive factors in elderly males 

[71], [72], [92]. 

 Quantitative comparison of intracranial arteries of infants and elderly [54]. 

 Vessel length on SNAP MRA and TOF MRA is a potential imaging biomarker for brain blood 

flow [93]. 

Up to July 2021, iCafe has been requested by more than 22 academic institutes or hospitals in 

6 countries for research through non-profit academic licenses. An incomplete list of their projects 

includes: 
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 Investigation of morphologic features of intracranial arteries in patients with ischemic stroke 

and after stroke recovery. 

 Difference measurements in brain arterial structure between patients with Williams Syndrome. 

 Investigation of MRA features of arterial pedicles that may predict hemorrhage risk in brain 

arteriovenous malformations. 

 Characterization of progressive stenosis or occlusion of intracranial arteries from subjects with 

Moyamoya disease. 

 Assessment on vascular modifications in a cohort of cerebral malaria patients from India. 

 Investigate for MRA features of arterial pedicles that may predict hemorrhage risk in brain 

arteriovenous malformations. 

 Determine the underlying mechanisms and subgroups at risk of vertebrobasilar dolioectasia. 

 Use iCafe as labeling tools for intracranial artery localization and segmentation. 
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Chapter 4. LUMEN AND VESSEL WALL SEGMENTATION 

Centerline with radius can only extract structural features of arteries. Segmentation for lumen and 

outer wall areas is needed after centerline generation to better delineate vascular areas, especially 

the accurate measurement of vessel wall area is an important indicator for atherosclerotic plaques. 

Vessel wall analysis in addition to the centerline generation helps us to better evaluate health status 

of vasculatures.  

In this chapter, accurate and automated segmentation for lumen and vessel wall region was 

introduced for detailed geometric feature extraction of the vasculature. For bright blood MRI, only 

lumen area can be visualized, so a 3D patch-based CNN method (Y-net) was used to segment 

lumen areas (section 4.1) from 3D images. For black blood MRI, both lumen and vessel wall can 

be visualized, so a polar segmentation model was applied on cross-sectional slices along the 

generated centerlines (section 4.2). We have applied our vessel wall segmentation technique into 

the analysis of 3.5 million popliteal vessel wall images from a large knee MRI dataset and showed 

promising results (section 4.3). 

Part of the contents from this chapter were described in details in our previous publications 

[53], [94]–[100].  

4.1 Y-NET LUMEN SEGMENTATION FROM MRA 

Lumen segmentation from MRA allows detailed artery structures to be extracted, a more detailed 

characterization of artery structures than the centerlines representation. Considering the complex 

artery intensity patterns in MRA so that no existing human-designed artery filters can segment 

lumen area of intracranial arteries robustly and accurately, a CNN method was used for lumen 

segmentation.  
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However, limited number of cases with segmentation labels and the large 3D image space 

(cannot be directly processed by usual GPUs) are the most challenges. Highly accurate manual 

segmentation labels as gold standard for artery segmentation are rare to find. Here we proposed to 

use a less perfect standard to train a model for artery luminal area segmentation by converting 

existing iCafe generated centerlines as alternative segmentation labels. To solve limited samples, 

a patch-based encoder-decoder CNN segmentation method with patch origin encoded (Y-net) was 

developed to fully use the similarity between different regions of artery.  

4.1.1 Y-net segmentation framework 

Patches of cubic of 16 were extracted from the 3D image, then the patch as well as the origin 

of the patch (normalized X,Y,Z coordinate position) were sent to the Y-net structure shown in 

Figure 4.1. Like the convolutional auto-encoder, useful image patterns were extracted from the 

original patch through multiple layers of convolution and max pooling for a low-dimensional 

encoding, then the encoded information was restored to the original size through multiple layers 

of convolution and up-sampling. The additional position path from Y-net provided patch source 

information as the additional information for better segmentation, as the probability of a patch 

containing artery in each region of the brain is different. 
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Figure 4.1 Neural network structure for Y-net 

 
To build the dataset for training, 49 cases of iCafe traced brain TOF MRA images were used. 

Label image was initialized with all zeros with the same size as the original image. Centerline 

(with radius) is interpolated to a gap of 1 pixel per point, then a sphere is painted with intensity of 

1 in the label image at each point center. Then patches from original image and labeled image are 

extracted using a sliding window to train the network. To balance the patches with and without 

artery region (around 99% voxels are background), strides for sliding window are different in a 

two-stage extraction strategy. Firstly a smaller stride 𝑆ଵ extracts 𝑃௣ positive patches if there is at 

least one voxel labeled as vascular region in labeled patches from 𝑃௔ patches; then a larger stride 

𝑆ଶ is estimated according to the selection rate in the previous step to extract similar number of all 

non-artery patches. 

  𝑆ଶ = ට
௉ೌ ି௉೛

௉೛

య
  (4.1)  
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When the network was trained, predictions from overlapped patches (with stride of 8) were 

averaged to ensure smoothness in patch boundaries, then a threshold was selected from the 

validation set to get the best binary segmentation.  

4.1.2 Evaluation metrics 

The post-processed binary image was compared with the labeled image voxel by voxel. 

Binary classification performance was evaluated by accuracy, sensitivity, specificity, precision, 

and the dice similarity co-efficient (DSC), defined as  

  𝐷𝑆𝐶 =
ଶ(஺∩஻)

(஺ା஻)
  (4.2)  

where A is the ground truth result and B is the segmentation result. DSC ranges from 0 (no 

overlap) to 1 (identical results). DSC > 0.7 indicates excellent agreement [101]. 

4.1.3 Experimental results 

The binary classification results from CAE (with variations) as well as traditional 

segmentation methods are shown in Table 4.1. 

 

Table 4.1 Binary classification evaluation between Y-net (with threshold) and classical 

segmentation methods 

Models Accuracy Sensitivity Specificity Precision DSC 
Y-net (0.38) 0.99837 0.83815 0.99913 0.81883 0.82838 
Y-net (0.15) 0.99726 0.92235 0.99761 0.64560 0.75955 

Y-net (0.38) no 
localization 

0.99823 0.82208 0.99906 0.80465 0.81327 

Y-net (0.38) epoch 100 0.99801 0.80282 0.99893 0.77965 0.79107 
Renyi 0.99500 0.52331 0.99724 0.47272 0.49673 

Phansalkar 0.85897 0.92017 0.85868 0.02992 0.05795 
Frangi 0.99731 0.56023 0.99937 0.80856 0.66187 
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A threshold of 0.38 was selected. The generated MIP views of the labeled image, predicted 

image by CAE, and segmentation results using traditional methods of the test set are shown in 

Figure 4.2.  

 
Figure 4.2 An example of lumen segmentation. 

Top Left: Labeled image. Top middle: Predicted image (with possibility from 0 to 1) by 

CAE. Top Right: Predicted image after thresholding. Bottom Left to Right: Segmentation results 

by Renyi Entropy threshold, Phansalkar local threshold, and Frangi filtering.  

 

4.1.4 Summary 

We trained a Y-net for intracranial artery segmentation on brain TOF MRA. Our model 

outperformed three traditional segmentation methods in both binary classification and visual 

evaluation. Accurate segmentation of the whole cerebral vasculature will facilitate quantification 

of global and territorial vascular features. 

More details of this approach can be found in our publications [94], [102]. 
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4.2 POLAR VESSEL WALL SEGMENTATION FROM VWI 

Compared with lumen segmentation from MRA, where the signal contrasts in lumen boundaries 

are much higher, vessel wall segmentation from VWI is more challenging. Both lumen boundary 

and outer wall boundary can be identified in the black blood VWI, but the segmentation target of 

the vessel wall area is much smaller than the lumen area. If we directly use the network structure 

in lumen segmentation on vessel wall [95], although most slices with normal vessel wall can be 

segmented reasonably well, some challenging slices with weak signal or irregular vessel wall 

boundaries are problematic. The segmented vessel wall region does not always have closed 

contours, which are not possible to extract vessel wall morphometry features as the critical 

measurements for atherosclerotic plaques. In addition, neighboring arteries (for example, ECA 

near ICA) will also be segmented due to the similar vessel wall signal patterns. One example is 

shown in Figure 4.3. 

 
Figure 4.3 Exemplar problems encountered previously in the Cartesian based CNN method 

[94].  

(a) Original vessel wall image  

(b) Probability map from prediction. ECA is visible in the region of interest for ICA (the 

target artery) vessel wall segmentation, leading to both arteries with high probability.  

(c) Broken vessel wall segmentation due to weak signal on vessel wall region.  

(d) The human label. 
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In addition, feedback from the automated segmentation model, for example, the confidence 

of the segmentation is usually not available, but might be useful for clinicians to manually correct 

contours on the problematic slices to ensure the segmentation quality. 

In this section, vessel wall segmentation in the polar coordinate system is explored and 

compared with the state-of-the-art Cartesian segmentation methods. Different from almost all 

other methods based on the Cartesian coordinate system, the vessel wall segmentation in the polar 

coordinate system provides unique benefits including better vessel wall continuity and improved 

segmentation especially needed in challenging slices near arterial bifurcations, where the artery 

shape is no longer circular. In addition, by predicting boundary coordinates from rotated polar 

patches and comparing with the probability map, our method can additionally yield uncertainty 

scores to inform human for possible mistakes. An illustration of polar segmentation workflow is 

shown in Figure 4.4. 

 
Figure 4.4 Workflow for Polar segmentation on vessel wall.  

First, image patch along the ICA/CCA centerline is extracted (ECA centerline can be 

generated if needed), then the Cartesian image patch is converted into the polar coordinate 

system so that similar artery structures (ICA and ECA) will be much different in the polar patch. 

After segmentation for polar patches in the polar coordinate system, which is easier to ensure 

boundary continuity, the image is converted to Cartesian coordinate system through inverse polar 

conversion. 
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4.2.1 Polar segmentation network 

The Cartesian image patch 𝑃෠[𝑦, 𝑥], with the size of 4ℎ ∗ 4𝑤 (ℎ: height and 𝑤: width, 4 times 

the original scale to enlarge the vessel wall images; height and width are large enough to ensure 

the whole vessel wall can be included in the image patch) is extracted from the original 3D image 

at the position along the generated ICA/CCA centerline using the centerline generation method 

introduced in the section 3.1. Then 𝑃෠[𝑦, 𝑥]  is converted to the polar image patch 𝑃[𝑡, 𝑟]  (𝑡 : 

translation, 𝑟: rotation) using the polar transformation. ECA centerline can also be generated for 

vessel wall segmentation using similar methods if needed. 

  

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧ 𝑟 = ඥ(𝑦 − 2 ∗ ℎ)ଶ + (𝑥 − 2 ∗ 𝑤)ଶ

𝑡 =

⎩
⎪⎪
⎨

⎪⎪
⎧

௛

ଵ଼଴
arctan ቀ

௬ିଶ∗௛

௫ିଶ∗௪
ቁ , 𝑦 > 2 ∗ ℎ 𝑎𝑛𝑑 𝑥 > 2 ∗ 𝑤 

௛

ଵ଼଴
arctan ቀ

௬ିଶ∗௛

௫ିଶ∗௪
ቁ + 180, 𝑦 < 2 ∗ ℎ 

௛

ଵ଼଴
arctan ቀ

௬ିଶ∗௛

௫ିଶ∗௪
ቁ + 360, 𝑦 > 2 ∗ ℎ 𝑎𝑛𝑑 𝑥 < 2 ∗ 𝑤

90, 𝑥 = 2 ∗ 𝑤 𝑎𝑛𝑑 𝑦 = 2 ∗ ℎ + 𝑟
270, 𝑥 = 2 ∗ 𝑤 𝑎𝑛𝑑 𝑦 = 2 ∗ ℎ − 𝑟

  (4.3)  

We designed four CNN architectures for segmentation in the polar coordinate system and 

compared their performances. 
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Figure 4.5 Workflow for proposed polar segmentation CNN architectures. 

 
 

The first structure (Polar-Seg-Reg) with three CNN branches is shown in Figure 4.5. The 

encoding branch extracts the useful information from the polar patch for the decoding branch to 

predict segmentation probability map 𝑆(𝑃) and for the regression branch to predict the lumen and 

outer wall boundary coordinates in the polar coordinate system 𝑅௟(𝑃), 𝑅௪(𝑃). The boundary 

coordinates then are converted to Cartesian system 𝑅෠௟,௪(𝑦, 𝑥) =  𝑓ିଵ(𝑅௟,௪(𝑃)) . The inverse polar 

conversion is defined as 𝑃෠[𝑦, 𝑥] = 𝑓ିଵ(𝑃[𝑡, 𝑟]), where 

  ቐ
𝑦 = 2 ∗ ℎ + 𝑟 ∗ sin ቀ𝑡 ∗

ଷ଺଴

ଶ∗௛
ቁ

𝑥 = 2 ∗ 𝑤 + 𝑟 ∗ cos ቀ𝑡 ∗
ଷ଺଴

ଶ∗௛
ቁ

  (4.4)  

The regions between boundaries 𝑅෠௟,௪(𝑦, 𝑥) are filled with 1 to be the binary segmentation 

mask 𝑆𝑀௥
෢ (𝑃). No skip connections [58] between the encoding and decoding branches are used to 

ensure the most representative information is encoded in the shared middle layer to better train the 
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boundary regression branch. Dice loss [103] and mean absolute error loss are used for the decoding 

and regression branch. Adam optimizer [84] is used to control the learning rate. 

The second architecture (Polar-Seg) only has the encoding and decoding branches but no 

regression branch. The segmentation mask is generated from the segmentation probability map 

𝑆(𝑃) in the polar coordinate system using the active contour algorithm [86] then converted to the 

Cartesian coordinate system. To apply the prior knowledge of the smooth ring shape of vessel 

wall, an extended map is used to avoid sudden change in boundaries between two edges of the 

polar image (𝑃[𝑡 = 0, 𝑟] and 𝑃[𝑡 = 2 ∗ ℎ, 𝑟]). 

  𝑆ᇱ(𝑃[𝑡, 𝑟], 𝑏) = ቐ

𝑆(𝑃[2 ∗ ℎ − 𝑏 + 𝑡, 𝑟]), 𝑡 < 𝑏 

𝑆(𝑃[𝑡, 𝑟]), 𝑏 ≤ 𝑡 ≤ 𝑏 + 2 ∗ ℎ

𝑆(𝑃[𝑡 − 𝑏 − 2 ∗ ℎ], 𝑟), 𝑡 > 𝑏 + 2 ∗ ℎ

  (4.5)  

With the added paddings, bilateral neighboring information is available to predict smooth 

contours for regions near two edges. 𝑏 = 40 is used in this study. Initial contours are found at 

minimum and maximum gradient image along the 𝑟 direction. 

  ቊ
𝑅௟

଴(𝑃[𝑡, 𝑟]) = 𝑎𝑟𝑔𝑚𝑎𝑥௥(𝑆ᇱ(𝑃)[𝑡, 𝑟] − 𝑆ᇱ(𝑃)[𝑡, 𝑟 − 1])

𝑅௪
଴(𝑃[𝑡, 𝑟]) = 𝑎𝑟𝑔𝑚𝑖𝑛௥(𝑆ᇱ(𝑃)[𝑡, 𝑟] − 𝑆ᇱ(𝑃)[𝑡, 𝑟 − 1])

  (4.6)  

Head and tail of contours 𝑅௟,௪(𝑃[𝑡 = 0 𝑎𝑛𝑑 2 ∗ ℎ + 2 ∗ 𝑏]) are fixed during the iteration of 

the active contour algorithm. After iterations, the regions between contours 𝑅௟,௪(𝑃[𝑏 ≤ 𝑡 ≤ 2 ∗

ℎ + 𝑏]) are filled with 1 to be the segmentation mask 𝑆𝑀௦(P).  

The third architecture (Polar-Reg) only has the encoding and regression branches but no 

segmentation branch. The configuration and segmentation method are the same as the first 

architecture except the removal of the segmentation probability map. 

In addition to the three polar segmentation CNN architectures introduced in Figure 4.5. As an 

extension of the Polar-Reg model, a deeper regression model with Resnet 101 [104] is compared 
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on the performance improvement with deeper CNN architecture. The model (Polar-Res-Reg) is 

adapted by connecting last two layers of Polar-Reg to the last fully connected layer from Resnet 

trained with initial weights on ImageNet dataset [105]. 

To incorporate neighboring slices information, patch slices extracted from 𝐼መ at neighboring 

slices were concatenated in the depth dimension in all CNN architectures. For simplicity, the depth 

channel is not drawn in Figure 4.5. 

Data augmentation is needed for better training with limited samples. Traditional 

augmentation methods such as rotation and offsetting are not suitable for polar patches. A polar 

patch rotation method is proposed instead. Considering the boundless property of polar patch along 

the angle directions, augmented polar patch is defined as  

  𝑃ఈ
ᇱ[𝑡, 𝑟] = ൜

𝑃[2 ∗ ℎ − 𝛼 + 𝑡, 𝑟], 𝑡 < 𝛼

𝑃[𝑡 − 𝛼, 𝑟], 𝑡 ≥ 𝛼
  (4.7)  

where 𝛼 is a random integer from 0 to 2 ∗ ℎ. Combined with vertical flipping, 4 ∗ ℎ times 

samples can be acquired for training.  

During the prediction stage, multiple rotated polar patches are combined to ensure the 

boundary smoothness. Rotated patches with 𝛼௜ =  𝑖 ∗ 𝐺, 𝑖 = 1,2, … , ⌊2 ∗ ℎ/𝐺⌋ are generated and 

their prediction results are averaged to be the final probability map and boundary coordinates. 𝐺 

is the predefined gap for predictions (10 is empirically selected in this study). 

Final probability map of the patch 𝑀 from the segmentation branch can be calculated as  

  𝑀[𝑡, 𝑟] = 𝑆(𝑃[𝑡, 𝑟]) =
ଵ

ଶ∗
೓

ಸ

∑ 𝑆൫𝑃ఈ೔

ᇱ ൯[𝑔(𝑡 − 𝛼௜), 𝑟]௜   (4.8)  

where  𝑔(𝑥) = ൜
𝑥 + 2 ∗ ℎ, 𝑥 < 0

𝑥, 𝑥 ≥ 0
. 

Final lumen and outer wall boundary coordinates of the patch from the regression branch 𝐵௟ 

and 𝐵௪ can be calculated as  
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  𝐵௟,௪[𝑡] = 𝑅௟,௪(𝑃[𝑡]) =
ଵ

ଶ∗௛/ீ
∑ 𝑅௟,௪(𝑃ఈ೔

ᇱ [𝑔(𝑡 − 𝛼௜)])௜ . (4.9)  

Vessel wall contours in Cartesian coordinate system are 

  𝐵෠௟,௪(𝑥, 𝑦) =  𝑓ିଵ ቀ𝐵௟,௪(𝑡)ቁ. (4.10)  

4.2.2 Segmentation uncertainty scores 

We observe that vessel wall segmentation with good agreement with manual labels 

demonstrates clear boundaries and a simple ring shape in MR images, and thus the segmentation 

neural network reliably generates consistent vessel wall boundaries from rotated patches with any 

𝛼௜ , in other words, 𝑆൫𝑃ఈ೔

ᇱ ൯[𝑔(𝑡 − 𝛼௜), 𝑟] and 𝑅௟,௪൫𝑃ఈ೔

ᇱ [𝑔(𝑡 − 𝛼௜)]൯ should be constants with all 

possible 𝛼௜ . In addition, the output results from the segmentation and the regression branches 

should be consistent, in other words, |𝑓ିଵ(𝑀)- 𝑆𝑀௥
෢ (𝑃)| = 0. 

Based on that, we propose two methods to quantify the segmentation uncertainties by up to 

three scores from the CNN architecture.  

For the first architecture where both the segmentation mask 𝑀[𝑡, 𝑟] from the segmentation 

branch and the boundary coordinates 𝐵௟,௪[𝑡]  from the regression branch are available, 

segmentation confidence 𝐶𝑜𝑛𝑓(𝑃) can be calculated from the consistency between two branches, 

defined as the normalized foreground minus background probability map. 

  𝐹𝑆 = ∑ 𝑀[𝑡, 𝑟], 𝑖𝑓𝐵௟[𝑡] ≤ 𝑟 ≤ 𝐵௪[𝑡] ௧,௥ , (4.11)  

  𝐵𝑆 = ∑ 𝑀[𝑡, 𝑟], 𝑖𝑓𝑟 < 𝐵௟[𝑡] 𝑜𝑟 𝑟 > 𝐵௪[𝑡]௧,௥ , (4.12)  

  𝐶𝑜𝑛𝑓(𝑃) =
ிௌି஻ௌ

∑ (஻ೢ[௧]ି஻೗[௧])೟
, (4.13)  

𝐶𝑜𝑛𝑓(𝑃) has the maximum value of 1, indicating perfect confidence, but has no lower limit.  

For the first and third architectures where the boundary coordinates 𝑅௟,௪(𝑃[𝑡]) from the 

multiple rotated patches are available, the lumen and wall consistency can be calculated as 
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  𝐶𝑠𝑡௟,௪(𝑃) = 1 −
ଵ

ଶ∗௛
∑ ቌ

ଵ

ට
భ

భమ

ඨ
ଵ

ଶ∗
೓

ಸ

∑ ቀ
ோ೗,ೢ൫௉ഀᇲ [௧]൯ି஻೗,ೢ[௧]

ଶ∗௪
ቁ

ଶ

ఈ ቍ௧ . (4.14)  

Boundary coordinates are normalized between 0 to 1, and the variation of prediction from 

different patches is evaluated by the ratio of standard deviation of boundaries predicted from 

different patches to the worst case when all the predictions are random (ඥ1/12). Range of 

consistency is between 0 (random) to 1 (perfect consistent). The worst case scenario is unlikely to 

happen, which means the score is usually high.  

Polar patches used for training were converted from perfect lumen centers, which was not the 

case for testing data, leading to inferior segmentations in prediction. Even refined after artery 

centerline generation, the artery centers can still be further improved from the deviations calculated 

from the predicted polar boundaries. The center deviations can be reduced iteratively from the 

angle of 
ଷ଺଴°

ଶ௛
∅ with the largest differences of polar coordinates from opposite directions.  

  ቐ

∅ = 𝑎𝑟𝑔𝑚𝑎𝑥(|𝐵௟[∅] − 𝐵௟[∅ + ℎ]|)

∆𝑥 = cos(𝐵௟[∅] − 𝐵௟[∅ + ℎ])

∆𝑦 = sin(𝐵௟[∅] − 𝐵௟[∅ + ℎ])
 (4.15)  

4.2.3 Evaluations 

We used the same carotid dataset introduced in section 3.1 for evaluating the segmentation 

performance. Lumen and outer walls are traced manually by trained reviewers with 3+ years’ 

experience in cardiovascular MR imaging using a custom-designed software package 

(CASCADE) [64]. Image slices with poor image quality are excluded from review and all the 

labeled slices are also peer reviewed to ensure the label quality.  

To evaluate the effect of accurate polar centers on the performance of vessel wall 

segmentation, the Polar-Reg model was tested directly on bounding box centers (without tracklet 
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refinement). To evaluate the effectiveness of the iterative center adjustment from segmentation, 

Polar-Reg-Once allowed only one segmentation per vessel wall. 

Cartesian based segmentation methods (existing methods are usually in this category) were 

also compared, including the popular neural network models 3D U-net [58] (previously adopted 

in vessel wall segmentation [95]), Mask-RCNN [106] (Resnet  101 backbone, pretrained on the 

ImageNet [105] dataset). These methods were trained and tested using the same datasets and 

settings as our polar models. 

We also compared the performance with a state-of-the-art non-CNN vessel wall segmentation 

method, Optimal front segmentation (Opfront) [41], which is based on the graph cut algorithm. 

Performance of the segmentation was evaluated by the DSC, and Degree of Similarity (DoS) 

[107], both of which ranged from 0 (mismatch) to 1 (perfect match). DSC > 0.7 indicates excellent 

agreement [108]. DSC for lumen (DSCInner: area within the lumen contour), complete vessel 

(DSCOuter: area within the outer wall contour) and vessel wall (DSCVW: area between the lumen 

and outer wall contours) were evaluated separately. DoS for lumen and outer walls were also 

evaluated separately as DoSLumen, DoSWall. In addition, vascular features from predicted and 

ground truth contours were calculated and compared. Representative and clinically important 

vascular features were selected, including max wall thickness, mean wall thickness, lumen area, 

and wall area. Absolute mean difference and intraclass correlation coefficient between predicted 

and ground truth vascular features were calculated. 

Independent associations between consistency scores and DSCVW were evaluated using 

Spearman’s partial rank correlation coefficients. The correlation between a combination of scores 

and DSCVW was summarized using R-squared from a linear model with rank-transformed scores 

as predictor variables and DSCVW as the outcome variable. These analyses were conducted at the 
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slice level, so generalized estimating equations (GEEs) were used to test associations and compare 

models while accounting for non-independence between slices from the same subject.  

4.2.4 Experimental results 

The superior performance of polar models compared with other models in vessel wall 

segmentation and vessel wall feature quantification is shown in Table 4.2 and Table 4.3. 

 
Table 4.2 Carotid vessel wall segmentation performance compared with other methods. 

Model DSC
VW 

DSCI

NNER 
DSC
Outer 

DoSL

umen 
DoS
Wall 

Number 
of 

failed 
slices  

Processing 
time (s) 

Number 
of 

parameter
s in 

network 
Polar-Res-Reg 0.860 0.961 0.962 0.921 0.864 0 0.757±0.072 44,989,22

4 
Polar-Res-Reg-

Single 
0.841 0.955 0.954 0.901 0.838 0 0.891±0.151 44,989,22

4 
Polar-Reg 0.852 0.958 0.959 0.913 0.846 0 0.738±0.058 5,642,016 

Polar-Seg-Reg 0.852 0.958 0.959 0.912 0.840 0 1.264±0.066 7,386,914 
Polar-Seg 0.811 0.942 0.945 0.866 0.747 0 0.886±0.059 4,095,682 

Mask R-CNN 
[109] 

0.792 0.940 0.940 0.654 0.565 81 0.138±0.027 63,733,40
6 

Cartesian U-net 
[110] 

0.774 0.922 0.941 0.647 0.517 194 0.103±0.032 4,094,817 

Opfront [41] 0.531 0.822 0.878 N/A N/A N/A 38.717±5.37
0 

N/A 

 

Table 4.3 Carotid vessel wall features quantified from segmentation compared with other 

methods. 

Model Max Wall 
Thickness 

Mean Wall 
Thickness 

Lumen Area Wall Area 

MAD ICC (CI) MAD ICC (CI) MAD ICC (CI) MAD ICC (CI) 
Polar-Res-

Reg 
0.890 0.896 

(0.887-
0.904) 

0.484 0.886 
(0.878-
0.893) 

25.715 0.985 
(0.984-
0.986) 

40.404 0.984 
(0.983-
0.985) 

Polar-Reg 0.956 0.874 
(0.864-
0.883) 

0.511 0.870 
(0.862-
0.878) 

27.715 0.981 
(0.979-
0.982) 

43.317 0.981 
(0.979-
0.983) 
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Polar-
Reg-Seg 

0.916 0.893 
(0.886-
0.900) 

0.507 0.879 
(0.871-
0.887) 

27.221 0.983 
(0.982-
0.984) 

43.625 0.983 
(0.982-
0.984) 

Polar-Seg 1.353 0.760 
(0.717-
0.794) 

0.692 0.762 
(0.644-
0.832) 

31.338 0.965 
(0.963-
0.968) 

59.100 0.971 
(0.961-
0.978) 

Mask R-
CNN 
[106] 

1.264 0.653 
(0.632-
0.672) 

0.701 0.509 
(0.473-
0.543) 

32.171 0.942 
(0.938-
0.945) 

62.567 0.907 
(0.885-
0.924) 

Cartesian 
U-Net 
[58] 

1.071 0.810 
(0.798-
0.822) 

0.565 0.808 
(0.728-
0.859) 

45.065 0.935 
(0.923-
0.945) 

52.460 0.949 
(0.945-
0.952) 

 

As an example, the segmentation results by methods on two image slices are shown in Figure 

4.6. In general, polar models have good to excellent evaluation metrics (DSC > 0.7 indicates 

excellent agreement [108], ICC>0.75 is considered good, and >0.9 indicates excellent [111]). Polar 

regression models (Polar-Reg, Polar-Reg-Seg) have better performance than the segmentation 

model (Polar-Seg), in both lumen and outer wall, indicating segmentation from predicting 

boundaries are more effective than predicting probability maps. Deeper regression network (Polar-

Res-Reg with 45.0M parameters) has slightly better performance than the shallower regression 

model (Polar-Reg model with 4.6M parameters). Network architecture with neighboring slices as 

inputs are better than single slice inputs. The traditional method (Opfront) cannot handle vessel 

wall with weak signals, and in most cases cannot ensure ring shapes, so DoS is not evaluated. 
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Figure 4.6 Examples of vessel wall segmentations at the slices distal (first two rows) and 

proximal (bottom two rows) to the carotid bifurcation.  

Original Cartesian patches are converted to polar patches (first column) for prediction of 

vessel wall contours in polar coordinate system (middle bottom plot). Coordinates are converted 

back in Cartesian system and the region between two contours are filled as the segmentation 

(middle top plot). To better display the segmentation difference with manual labels (second 

column), regions are displayed as blue (TP, correct segmentation region), green (FP, wrong 

segmented region), and red (FN, not segmented region). Segmentation from two Cartesian 

methods (U-Net [58] and Mask R-CNN [106]) are compared in last two columns. Cartesian 

segmentations might have wrong artery of interest segmented (top) or broken vessel wall 

(bottom). For patches with low contrast (bottom), the uncertainty scores from the polar model 
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(Polar-Seg-Reg used as an example) are low, indicating possible lower segmentation 

performance, so manual checking might be required. A red line is drawn on the original patch to 

show lumen boundary.  

 
The number of slices and the mean DSC-VW in each of the image quality levels are shown 

in Table 4.4. Better image quality led to higher DSC-VW, but even for slices with only adequate 

image quality, the polar regression models still generated contours with DSC-VW over 0.694. 

 

Table 4.4 DSCVW from slices with different image qualities of carotid arteries 

 Image quality 
 Adequate Good Excellent 

Number of slices 621 2483 302 
Polar-Reg with 

ground truth center 
0.802 0.861 0.880 

Polar -Reg with 
localized center 

0.694 0.778 0.809 

 

Lastly, the uncertainty of segmentation is quantified using three scores. Both segmentation 

confidence and lumen consistency show significant contribution (p<1.26e-4 for all polar models) 

in predicting DSCVW, indicating lower scores are likely to generate a poor segmentation mask 

compared with the ground truth. Wall consistency has strong relations with lumen consistency, so 

its partial correlation is lower in the regression model. Quantitative results between models are 

shown in Table 4.5. Two of the segmentation uncertainty scores (segmentation confidence and 

lumen consistency) are shown to provide independent and critical information in identifying 

problematic slices in segmentation. 

 

Table 4.5 Quantitative comparison of carotid segmentation uncertainty predicted by polar 

models. 

Polar 
models 

Segmentation 
Confidence 

Lumen 
Consistency 

Wall Consistency 
R 

square 
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Correlat
ion 

P value 
Correlat

ion 
P value 

Correlat
ion 

P value 

Polar-Res-
Reg 

N/A 0.244 <1e-5 -0.043 0.060 0.139 

Polar-Reg N/A 0.132 <1e-5 0.047 0.045 0.115 
Polar-Seg-

Reg 
0.161 <1e-5 0.086 1.26e-4 -0.007 0.769 0.141 

Polar-Seg 0.552 <1e-5 N/A N/A 0.305 
Correlation: partial correlation coefficient from Spearman’s method. P value: from Generalized Estimating Equations. R square: from 

a linear model with rank-transformed scores as predictor variables and DSCVW as the outcome variable  

 

4.2.5 Extensible to other vascular beds 

The polar segmentation can also be applied to vascular beds other than the carotid arteries which 

were fully validated in section 4.2.4. Following a similar centerline generation, patch extraction 

along centerlines and polar segmentation workflow, vessel wall morphometry features from VWI 

of popliteal arteries and intracranial arteries can also be quantified. Details for the vessel wall 

analysis on popliteal arteries will be discussed in section 4.3. An example of intracranial artery 

vessel wall segmentation result is shown in Figure 4.7.  

 
Figure 4.7 Color coded intracranial arteries to display vessel wall thickness along the 

centerlines. The redder, the thicker of intracranial vessel wall. 
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4.2.6 Summary 

Fully automated vessel wall segmentation was achieved with high accuracy by effectively using a 

CNN based regression model to segment vessel wall in the polar coordinate system. Traditional 

vessel wall segmentation methods are susceptible to poor image quality, only providing reasonable 

results when both lumen and outer wall boundaries have high contrast. Our proposed deep 

learning-based method extracted useful boundary information from more than 32,000 slices of 

manually drawn vessel wall contours with various levels of image quality. We believe our dataset 

encompasses a wide spectrum of atherosclerosis as well as healthy arteries and is capable of 

training a robust deep learning model with good generalizability. The use of the polar regression 

CNN architecture is an ideal approach, incorporating the prior knowledge of vessel wall structures 

(e.g., ring shape, lumen in the center), and outperforms our previous deep learning segmentation 

method [95] based on the Cartesian coordinate system. 

Both consistency scores were shown to provide independent and critical information in 

identifying problematic slices in segmentation, which can be useful in guiding humans to examine 

only the slices with higher likelihoods of possible errors and ensure high segmentation quality.  

The application of deep learning methods in vessel wall segmentation might have a profound 

impact on MR vessel wall image analysis. As a research tool, with accurately segmented vessel 

wall areas from an automated method, quantitative vessel wall features can be extracted to enhance 

our understanding of atherosclerosis progression from large population studies, for which time-

consuming manual or semi-automated methods are not achievable (details in section 4.3). 

Clinically, a fast screening tool can be developed to automatically identify high-risk patients for 

further detailed examination in a time-efficient manner (details in chapter 5). After choosing a 

proper threshold for better sensitivity over specificity, the quantitative vessel wall features along 
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with the confidence scores can largely reduce the burden for clinicians by prioritizing patients 

urgently requiring medical care and giving initial evaluations for the carotid scans. 

More details of this approach can be found in our publications [53], [96]. 

4.3 CLINICAL APPLICATIONS 

4.3.1 Development of FRAPPE 

Our fully automated vessel wall segmentation method makes the analysis of large population 

studies available. The Osteoarthritis Initiative (OAI) [112] dataset, sponsored by the National 

Institutes of Health, (available for public access at http://www.oai.ucsf.edu/) is an ideal dataset 

which best suits our purpose. This massive dataset (bilateral knee MRI in 4796 subjects up to 8 

time points over a period of 96 months, over three million images in total) provides high-quality 

3D VW MRI images with the popliteal artery wall clearly visible on the 3D DESS sequence. 

Therefore, it is ideal for research on vessel wall features as MR biomarkers [113] and the 

relationship of these biomarkers with cardiovascular risks [92].  

By adapting the artery centerline generation and vessel wall segmentation techniques to 

popliteal arteries, we developed a fully automated and robust analysis technique for popliteal 

artery evaluation (FRAPPE) specifically optimized for popliteal vessel wall analysis. 

Workflow of FRAPPE along with example images in each step is shown in Figure 4.8. 
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Figure 4.8 Workflow of FRAPPE and example images from each step. 

 
Transfer learning and active learning techniques were applied to train the centerline 

generation and segmentation models, aided by limited human annotations. Initiated from previous 

models for carotid artery applications [96] where many human annotations are available, models 

could be trained using a relatively small dataset of popliteal artery images to reduce the need for 

tedious human labeling.  

From the segmentation model developed from the carotid dataset, additional 23 subjects (1264 

slices of vessel wall contours) were used to further tune the model on popliteal arteries. The 

validation and test sets include 2 subjects (117 slices) and 10 subjects (588 slices), respectively. 

To improve the robustness of FRAPPE in quantifying the images which are particularly 

challenging, such as abnormal artery structures, poor image quality or with substantial artifacts, 

an active learning process with manual supervision was applied. With manual corrections on vessel 

wall contours from an expert human reviewer (with over 10 years of experience in vascular 

review), batches of challenging samples, such as images in artery bifurcations or with calcified 

plaques, with low confidence scores, are chosen for manual corrections, then the corrected images 

were used for further training, so that the performance of FRAPPE on difficult samples was 
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iteratively improved. One slice of image with calcified plaque before and after active learning is 

shown in Figure 4.9. 

 
Figure 4.9 Calcified plaque (left image pointed by the red arrow) missed before active 

learning (middle), found after additional training using active learning technique (right) 

 
From the test set, FRAPPE has the DSC of 0.79 (95% CI: 0.77-0.81). Relative to human 

reviewers, the CV and ICC estimates for FRAPPE were 8.7% and 0.73 for mean wall thickness, 

10.0% and 0.90 for mean wall area, and 2.9% and 0.99 for mean lumen area. Some of the 

segmentation results on challenging images are shown in Figure 4.10, demonstrating good 

performance of FRAPPE on bifurcation images, vessel wall with low contrasts, vessel wall with 

plaque, and when the artery is close to the vein. 



 

 

86

 
Figure 4.10 Example of FRAPPE generated contours. 

FRAPPE results (right images. red contour: lumen boundary, blue contour: outer wall 

boundary) are reliable in challenging images (original images shown in the left, zoomed in 

images shown in the middle) with low image contrast around vessel wall boundary, bifurcation 

(top row), plaque (middle row) and when artery is close to the vein (bottom row) 

 
Because of the accuracy and efficiency of FRAPPE, over three million images in OAI were 

processed within two months, and it could take more than 67 years (8 hours per workday) if using 

manual review.  

More details of this approach can be found in our publications [97], [98]. 

 

Many exciting research become available using the 3.5 million vessel wall patches and 

accurate vessel wall segmentations. Three examples were discussed in section 4.3.2 to 4.3.4.  
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4.3.2 FRAPPE to summarize vessel wall remodeling patterns 

The most direct way of analyzing the vessel wall from the OAI dataset is to use statistical methods 

to perform epidemiologic studies, for example, identifying the vessel wall remodeling patterns 

from the vessel wall morphometry features. The large number of subjects in various vascular health 

states (about one third have vascular disease) is ideal for the analysis.  

Remodeling patterns were studied at the slice level by fitting nonlinear curves relating mean 

wall thickness (MWT) to mean lumen diameter and mean outer wall diameter while adjusting for 

sex, age, height, and atherosclerosis risk factors using generalized additive models. The 

nonparametric bootstrap with resampling by subject (1000 resamples) was used to calculate 95% 

confidence bands for the spline curves. All analyses were weighted using weights derived from 

the FRAPPE algorithm representing its level of confidence in measurements at the slice level (side- 

specific), previously shown to improve the repeatability of the measurements. 

Spline-smoothed relationships of MWT with lumen and outer wall diameters across 235,152 

cross-sectional images in men and 319,953 images in women are shown in Figure 4.11 after 

adjusting for risk factors. When MWT increased starting from <0.5 mm, both lumen and outer 

wall diameter also increased on average. When MWT exceeded 0.92 mm (95% CI, 0.91– 0.93 

mm) on average for men and 0.84 mm (95% CI, 0.83– 0.85 mm) on average for women, the mean 

lumen diameter began to steadily decrease with further increases in MWT. Over the range 0.92 to 

1.84 in men and 0.84 to 1.68 in women, the average lumen diameter decrease was more rapid in 

men (−7.9% per 25% increase in MWT; 95% CI, −8.8 to −7.1%) than women (−6.1% per 25% 

increase in MWT; 95% CI, −6.7 to −5.5%; P<0.001 for the difference with men). In contrast, over 

those same ranges, there was no significant increase in the outer wall diameter in men on average 

(−0.5% per 25% increase in MWT; 95% CI, −1.2 to 0.1%; P=0.12 compared with 0), while there 
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was a small but statistically significant increase in outer wall diameter in women (1.2% per 25% 

increase in MWT; 95% CI, 0.8%–1.7%; P<0.001 compared with men).  

 
Figure 4.11 Popliteal artery remodeling patterns in men and women. 

Spline- smoothed relationships of mean wall thickness with lumen diameter and outer 

diameter are shown, based on 235 152 and 319 953 cross- sectional images of men and women, 

respectively. The shaded regions represent 95% pointwise confidence bands. The vertical regions 

indicate the thickness where on average the mean lumen diameter tends to decrease with 

increasing thickness (0.92 mm in men and 0.84 mm in women). WT indicates wall thickness. 

 
This study will advance the understanding of subclinical popliteal vascular diseases such 

atherosclerosis, identifying patients at risk of cardiovascular disease progression or ischemic 

events. More details of this approach can be found in our publications [100]. 

4.3.3 FRAPPE extracted features as new biomarker for cardiovascular risks 

As our research focuses on cardiovascular risk assessments, we identified two groups of subjects 

who, on the basis of baseline clinical and demographic information, had respectively low or high 

risk for cardiovascular disease. This allowed us to compare results between high and low risk 
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groups and to enrich the datasets used for training, validation, and testing with individuals at higher 

risk of atherosclerosis and plaque in their popliteal arteries. The high-risk group included subjects 

≥65 years old with a history of smoking, history of hypertension, BMI≥25 kg/m2, and at least 

one of seven additional prior events or risk factors: 1) operation to unclog or bypass arteries in 

legs; 2) stroke, transient ischemic attack, blood clot or bleeding in brain; 3) heart attack; 4) 

diabetes; 5) current smoker; 6) BMI≥30 kg/m2; 7) age≥75 years old. The low-risk group included 

subjects < 55 years old who never smoked, were not hypertensive, had BMI<25 kg/m2 and had 

none of the seven additional risk factors specified for the high-risk group.  

Artery-based vascular features in subjects with high and low risk for atherosclerosis (Testing 

Set 4) are summarized in Table 4.6. Mean eccentricity ratio (area under the receiver operating 

characteristic curve (AUC): 0.79, 95% CI: 0.68-0.89, p=0.005), max wall thickness (AUC: 0.73, 

95% CI: 0.60-0.85, p=0.002), and mean wall thickness (AUC: 0.71, 95% CI: 0.57-0.84, p=0.004) 

were most able to discriminate between high- and low-risk groups based on the AUC.  

 

Table 4.6 Comparison of FRAPPE vessel wall measurements between high and low 

atherosclerosis risk groups. 

 
Risk Group Difference 

 

Variable 

High 

(N=50) 

Low 

(N=50) 

 

Mean 

 

(95% CI) 

 

P-value 

 

AUC 

 

(95% CI) 

Mean wall thickness, mm 0.82 ± 0.08 0.76 ± 0.06 0.06 (0.02, 0.10) 0.004 0.71 (0.57, 0.84) 

Max wall thickness, mm 1.97 ± 0.56 1.57 ± 0.43 0.40 (0.16, 0.63) 0.002 0.73 (0.60, 0.85) 

Mean eccentricity ratio 1.47 ± 0.20 1.34 ± 0.15 0.13 (0.04, 0.22) 0.005 0.79 (0.68, 0.89) 

Mean wall area, mm2 17 ± 4 16 ± 4 1.2 (-0.9, 3.3) 0.25 0.60 (0.44, 0.75) 

Mean lumen area, mm2 27 ± 8 28 ± 11 -1.0 (-6.3, 4.2) 0.72 0.50 (0.34, 0.67) 

Mean total vessel area, mm2 45 ± 12 44 ± 15 0.2 (-7.1, 7.3) 0.95 0.53 (0.37, 0.69) 
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Mean normalized wall index, % 39 ± 3 38 ± 4 1.7 (-0.2, 3.5) 0.073 0.65 (0.49, 0.79) 

Max normalized wall index, % 49 ± 6 46 ± 7 2.9 (-0.5, 6.2) 0.091 0.64 (0.49, 0.77) 

 

More details of this approach can be found in our publication [97]. 

4.3.4 FRAPPE to build vessel wall feature map 

A feature map is a high dimensional representation of image features extractable from the feature 

embedding layers of the neural network models. With feature maps extracted from the abundant 

vessel wall images and after feature reduction techniques, the characterization for vessel wall 

patches and their relations can be represented in human understandable maps. Using feature maps, 

we can, for example, easily find all the patches with similar plaques or aneurysms.  

Starting from the backbone of the vessel wall segmentation CNN, by using the automated 

generated vessel wall thickness measurements (weak labels) as training labels, and a few highly 

challenging labeled samples (three rounds of active learning, 256 normal patches and 256 disease 

patches), a meaningful feature map could be generated [99].  

Feature maps before and after metric learning are shown in Figure 4.12. Two clusters in the 

feature map are less mixed after metric learning, leading to more meaningful feature 

representations. 

Figure 4.13 displays artery patches at selected dots in the feature map. Patches of normal 

arteries are far away from vessel wall with clear plaques while plaques with similar patterns are 

close in feature space. Patches at the boundary of two clusters in the feature map are found to be 

ambiguous and even challenging for expert humans to classify.  
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Figure 4.12 Feature map of test data represented in 2D space using t-SNE. 

Each dot is represented as the artery patch feature embedding in the feature map. The colors 

(red for normal arteries, orange for arteries with plaque) are painted from the manual labels for 

readers to better understand the physical meaning of the feature map. Before metric learning (left 

figure), a large number of dots from two classes are mixed in feature space, but are separated 

after metric learning (right figure). Patches at four locations are shown in Figure 4.13. 
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Figure 4.13 Patches, segmentation mask of vessel wall and the bar chart of 40 dimensional 

feature embeddings at four feature map locations indicated in Figure 4.12. 

Patches of normal arteries (①) are far away from vessel wall with clear plaques (②③). 

Plaques with similar patterns (②③) are likely to have close distance in the feature space. In this 

case, both artery patches have calcifications in the vessel wall. Patches at the boundary of two 

clusters in feature map (④) are likely to be ambiguous slices even challenging for human to 

decide the class.  

 
More details of this approach can be found in our publication [99]. 

4.3.5 Summary 

Like the previous work of vessel wall analysis on carotid arteries [6], vessel wall features 

generated from FRAPPE are also able to offer imaging biomarkers of cardiovascular risk useful 
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in both research and clinical environments. In addition, we believe FRAPPE could have wide 

applicability wherever knee MRI data are acquired, such as FRAPPE could provide an add-on 

popliteal artery analysis of standard knee MR scans without adding any additional work for 

radiologists. Although vessel wall features for popliteal arteries have not usually been reported 

from routine knee scans, these features could provide additional assessments of cardiovascular 

risks in asymptomatic patients. Subjects identified with thickened vessel wall can then be referred 

for more detailed examinations for atherosclerosis. 
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Chapter 5. ATHEROSCLEROTIC LESION IDENTIFICATION AND 

CLASSIFICATION 

After successful artery centerline generation and lumen/vessel wall segmentation, a quantitative 

vascular map can be built to extract vascular structure and plaque features. One step to make the 

vascular map more meaningful and clinically useful is to add the additional feature about vascular 

disease locations.  

LATTE (another member of Cafe family) was designed for automated atherosclerotic lesion 

identification and assessment to automatically identify high-risk patients for further detailed 

examination in a time-efficient manner (section 5.1).  

Machine learning models developed from one dataset might not perform well on new datasets 

with slightly different imaging parameters, which leads to our domain adaptive lesion 

classification which applies an unsupervised domain adaptation method to improve the lesion 

classification accuracy (section 5.2).  

Part of the contents from this chapter were described in details in our previous publications 

[114]–[117].  

5.1 LATTE FOR LESION ASSESSMENTS 

While fast 3D carotid MRI is available, manual reading of vessel wall scans is time-consuming 

and requires extensive review experience, which restricts MR for screening purpose. To automate 

the vessel wall review, we develop and evaluate a fully automated AI solution for carotid lesion 

assessment from a 3D fast MRI sequence (3D-MERGE) by providing image quality assessment, 

artery localization and lesion classification. The workflow is called LATTE (Lesion Assessment 

Through Tracklet Evaluation), shown in Figure 5.1. 
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Figure 5.1 Workflow for fully automated carotid atherosclerotic lesion assessment (LATTE) 

in this study.  

1) 3D-MERGE sequence images were acquired. 2) Images were resliced into axial slices and 

centered of the neck region. 3) Artery detection was performed using a localization neural 

network model on each slice. 4) Artery-focused image quality assessments were generated for 

each slice. 5) Artery centerlines were generated using tracklet refinement of artery detection 

results. 6) Patch based atherosclerotic lesion classification. 

 
As a proof of concept, LATTE is focused on carotid artery assessment where atherosclerotic 

plaques are more critical to overall vascular health. The structure of the carotid artery and the 

example MR images for LATTE analysis is shown in Figure 5.2 
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Figure 5.2 Illustration of carotid anatomical regions with example 3D-MERGE images of 

carotid arteries from this study.  

Slices at both ends have low image qualities, thus the image quality assessment module is 

used to predict the qualified slices for review.  

 
A fast MR carotid sequence (3D Motion Sensitized Driven Equilibrium prepared Rapid 

Gradient Echo (3D-MERGE) [118]) of about 2 minutes was acquired in coronal direction for vessel 

wall analysis. Models were trained/validated/tested on 259/20/54 subjects of the Carotid 

Atherosclerosis Risk Assessment (CARE-II) dataset of 333 subjects acquired from five sites [61].  

5.1.1 LATTE development 

An image quality assessment model was developed to 1) identify whether the scan is of good 

quality (if the scan is with severe motion artifacts, a rescan is needed), and 2) exclude image slices 

with low quality to limit the further analysis [115]. Briefly, serial of no-overlapping patches was 

extracted around artery region (based on artery centerline generation) with weights (higher if closer 
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to the artery). Then each patch was assessed with a neural network for an image quality score, 

which were averaged with weights to be the final score. If the overall image quality for the whole 

slice is below a threshold, the scan was considered useless. If not, the range of slices with sufficient 

quality scores were used for further analysis.  

The artery centerline generation and vessel wall segmentation steps followed the methods 

introduced in section 3.1and 4.2.  

A classification model was used to categorize each artery slice into normal, early lesion and 

advanced lesion. Definition of three categories is in Table 5.1. Manual labels were given by an 

experienced radiologist. An average of 148.7 bounding boxes were labeled per scan by the 

radiologist for the CARE-II dataset, including 15920 bounding boxes for normal arteries (35.8%), 

14958 bounding boxes for early lesions (33.6%) and 13582 bounding boxes for advanced lesions 

(30.5%) with diagnostic image qualities on the CAREII dataset.  

 

Table 5.1 Carotid vessel wall categories with definition and example image slices 

Category Definition Example image slices 
Normal 
artery 

AHA type I-II lesion, 
normal or near-normal 
wall thickness 

 
Early 
lesion 

AHA type I-III lesion, 
mild wall thickening 
<1.5mm without 
complex compositions 
such as calcification, or 
lipid-rich necrotic core.  

Advanced 
lesion 

AHA type IV-VIII 
lesions, plaque lesion 
with wall thickening 
≥1.5mm or occlusion 
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Patches with the size of 64*64 are extracted from the center of the points on the artery 

centerline. In order to select the specific artery wall for classification when multiple artery walls 

exist in region of interest, (for example, ECA and ICA co-existing on image slices in the 

bifurcation region), vessel walls are segmented using the polar segmentation model for each 

carotid artery before classification. The segmented region, as an attention mask, is concatenated 

with the original patch in the channel dimension of the image. To include neighboring slices 

information in the classification, two proximal and two distal neighboring patches are extracted 

along the centerline and concatenated in the depth dimension of the image. Image patches (each 

patch with size of 64*64*5*2) are then classified using a convolutional neural network for the 

lesion type of the middle slice.  

The output of the model is a continuous variable of risk score trained from labels of -1 (normal 

artery), 0 (early lesion), and 1 (advanced lesion). Based on the purpose of LATTE, two thresholds 

were selected based on the validation set to divide the risk score range into three classes so that 

the sensitivity of advanced lesions and all lesions are 0.9. A confidence score (conf) can be derived 

from the risk score according to the distances to the thresholds using the following equation.  

  𝑐𝑜𝑛𝑓 =

 ൞

𝑚𝑎𝑥 ቀ0.01,1 − 𝑎𝑏𝑠൫𝑅𝑖𝑠𝑘𝑆𝑐𝑜𝑟𝑒 − (−1)൯ቁ , 𝑅𝑖𝑠𝑘𝑆𝑐𝑜𝑟𝑒 < 𝐿𝑜𝑤𝑒𝑟𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 

𝑚𝑎𝑥൫0.01,1 − 𝑎𝑏𝑠(𝑅𝑖𝑠𝑘𝑆𝑐𝑜𝑟𝑒)൯, 𝐿𝑜𝑤𝑒𝑟𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ≤ 𝑅𝑖𝑠𝑘𝑆𝑐𝑜𝑟𝑒 ≤ 𝑈𝑝𝑝𝑒𝑟𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

𝑚𝑎𝑥൫0.01,1 − 𝑎𝑏𝑠(𝑅𝑖𝑠𝑘𝑆𝑐𝑜𝑟𝑒 − 1)൯, 𝑅𝑖𝑠𝑘𝑆𝑐𝑜𝑟𝑒 > 𝑈𝑝𝑝𝑒𝑟𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

(5.1)  

5.1.2 Experimental results 

Image quality assessment. For the CARE-II dataset, the image quality assessment model 

achieved 0.93 in sensitivity and 0.72 in specificity.  

Centerline generation. Evaluated on 20 randomly selected scans from the test set with 

manually annotated 5503 bounding box labels, there were 172 human labeled bounding boxes 
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without at least 50% IoU with bounding boxes predicted from the model (Miss) and 63 predicted 

bounding boxes without at least 50% IoU with any human labeled bounding boxes (False 

detections). Among the 5331 predicted bounding boxes having at least 50% IoU with human labels 

(Hit), the mean distance to the annotated artery center was 0.82±0.09 pixels (0.28 mm).  

Lesion classification. The weighted kappa between the predicted lesion category and the 

ground truth was 0.65 (0.65-0.65); the AUC was 0.94 for detection of advanced lesions (operating 

point at sensitivity = 0.92 / specificity = 0.84); the AUC was 0.93 for detection of all lesions 

(operating point at sensitivity = 0.92 / specificity = 0.86). An example showing prediction and 

ground truth on one slice from the CARE-II dataset are shown in Figure 5.3.  

 
Figure 5.3 LATTE results on one slice of carotid artery from the testing set  

Green bounding boxes show prediction locations and artery type (text right to the bounding 

boxes), classification confidence (definition in Supporting Information) follows the artery type. 

Reference locations by the radiologist shown in blue, yellow and red representing normal 

arteries, early lesions and advanced lesions, respectively. 

 

Visualization. LATTE results can be viewed in iCafe GUI for human reviewers by switching 

between cross-sectional, axial/coronal/sagittal, or curve planar reformatted views to have a 

detailed examination of the predicted lesion areas. 

Review time.  Based on our workstation with Intel Xeon E5-1650 V4 @3.6GHz, NVIDIA 

Titan V and 64GB memory, the average processing time for one case was 6.0 minutes. However, 

it only took 44.0 seconds to get image quality assessment results. The processing time for artery 
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detection, artery refinement and lesion classification were 123.4 seconds, 133.9 seconds, 81.6 

seconds respectively. The manual review time for each scan (640-720 slices) was around 20-60 

minutes depending on vascular anatomy and lesion distribution.  

5.2 DOMAIN ADAPTIVE LESION CLASSIFICATION 

5.2.1 Datasets 

We used additional three datasets (CROP/IPH/Renji) with the same 3D-MERGE MRI sequence 

but slightly different imaging parameters to test the robustness of the domain adaptive model after 

it was adapted (no additional annotations needed) to the target dataset. Details of the datasets are 

described in Table 5.2. 

 

Table 5.2 Dataset division (subject based) and typical image properties of each dataset.  

Dataset 

Name 

Number of 

participati

ng sites 

Coronal 

Image size 

after 

interpolati

on 

Coil 

3D 

imaging 

resolution 

(mm*mm) 

Interpolat

ed 

resolution 

(mm*mm) 

Echo 

time/Repet

ition time 

(ms) 

Scan 

durations 

(seconds) 

CAREII 5 720*720 
8-channel 

carotid coil 

0.7*0.7*0.

7 

0.35*0.35*

0.35 
4.8/10.2 250.1 

CROP 1 720*720 

custom-

designed 

36-channel 

neurovascu

lar coil 

0.7*0.7*0.

7 

0.35*0.35*

0.35 
4.9/10.3 240.3 

IPH 1 640 * 640 
8-channel 

carotid coil 

0.8*0.8*0.

8 

0.40*0.40*

0.40 
4.3/9.1 158.5 

Renji 1 640 * 640 
8-channel 

carotid coil 

0.8*0.8*0.

8 

0.40*0.40*

0.40 
4.4/9.3 160.8 
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5.2.2 Unsupervised domain adaptation method  

Enlighted from [119], an unsupervised domain adaptation algorithm was applied to transfer 

the lesion classifier trained from the CARE-II dataset (source domain) to the three other datasets 

(target domains) without additional manual annotations. The structure of the domain adaptive 

classifier and the training strategy is shown in Figure 5.4. Patches of the carotid artery at five 

consecutive slices with both the original image and the vessel wall segmentation 𝑃 were used as 

the input to a convolutional neural network model for lesion category classification. In addition to 

the source classifier branch 𝑆(𝑃), where the artery at the center slice was classified into three 

categories 𝑦 , a domain classifier branch 𝐷(𝑃) was added after the last convolutional layer to 

discriminate the domain of the inputs (source or target). An alternate procedure was used in 

training the network. In step 1, weights of the domain classifier branch were fixed for training the 

rest of the network using both patches from the source 𝑃௦,௜ and target domains 𝑃௧,௜. The loss of step 

1 𝑙ଵ was the sum of the source classifier loss and the domain classifier loss. The source classifier 

loss is the mean absolute error loss from the source classifier branch where the ground truth 

category of the center patch of the input 𝑦௦,௜  was compared with the predicted category 𝑆൫𝑃௦,௜൯. 

The domain classifier loss is the binary cross entropy loss from the domain classifier branch where 

the ground truth domain 𝑑௦/௧,௜ was compared with the predicted domain 𝐷൫𝑃௦/௧,௜൯. It should be 

noted that the source classifier did not require labels from patches of the target domain (𝑦௧,௜ set to 

0) and the loss calculation of the source classifier did not include target domain patches due to the 

unsupervised domain adaptation design. 𝑖 indicates each patch in the source or target domain.  

  𝑙ଵ = ∑ ห𝑆൫𝑃௦,௜൯ − 𝑦௦,௜ห + 0 ∗ ห𝑆൫𝑃௧,௜൯ − 𝑦௧,௜ห −
ଵ

ே
∑ 𝑑௦/௧,௜ ∙ log ቀ𝐷൫𝑃௦/௧,௜൯ቁ + (1 − 𝑑௦/௧,௜) ∙ே

௜௜

log ቀ1 − 𝐷൫𝑃௦/௧,௜൯ቁ   (5.2) 
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In step 2, the weights other than the domain classifier were fixed, and the same input was used 

to train the domain classifier branch only. Importantly, an adversarial approach was used here to 

invert the domain labels on purpose to train the model, so that if the source classifier was robust 

enough, it could not tell whether the features extracted from the convolutional layers were 

originated from the source or target domain. In other words, the convolutional layers were trained 

to extract only features which were shared across different domains to make a correct classification 

in the source classifier. The loss in step 2 𝑙ଶ was only the binary cross entropy loss from the domain 

classifier branch. 

  𝑙ଶ = −
ଵ

ே
∑ (1 − 𝑑௦/௧,௜) ∙ log ቀ𝐷൫𝑃௦/௧,௜൯ቁ + 𝑑௦/௧,௜ ∙ log ቀ1 − 𝐷൫𝑃௦/௧,௜൯ቁே

௜  (5.3)  

 
Figure 5.4 Network structure and training strategy for the domain adaptive lesion 

classification. 

(a) Network structure for the domain adaptive lesion classifier. The feature extractor has 4 

concatenated blocks of 2 convolutional layer with kernel size of 32, a Relu layer and a max 

pooling layer with the stride of 2,2,1. The source classifier has three fully connected layers with 
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512, 128 and 1 nodes (number of neurons) and dropout layers with dropout probability of 0.5. 

The domain classifier has two fully connected layers with 32 and 1 nodes.  

(b) The data flow during the domain adaptive training. In step 1 of domain adaptation 

training, loss for source classifier (only on source domain patches) and loss for domain classifier 

were used to change weights on non-domain classifier branch. In step 2 of domain adaptation 

training, loss for domain classifier were used to change weights on domain classifier branch.  

5.2.3 Experimental results 

On the CROP dataset, the weighted kappa was 0.37 (0.36-0.38); the AUC was 0.88 for detection 

of advanced lesions (operating point at sensitivity = 0.90 / specificity = 0.67); the AUC was 0.83 

for detection of all lesions (operating point at sensitivity = 0.93 / specificity = 0.58). 

On the IPH dataset, the weighted kappa was 0.62 (0.61-0.63); the AUC was 0.90 for detection 

of advanced lesions (operating point at sensitivity = 0.92 / specificity = 0.69); the AUC was 0.90 

for detection of all lesions (operating point at sensitivity = 0.94 / specificity = 0.70). 

On the Renji dataset, the weighted kappa is 0.68 (0.67-0.68); the AUC is 0.94 for detection 

of advanced lesions (operating point at sensitivity = 0.90 / specificity = 0.84); the AUC is 0.90 for 

detection of all lesions (operating point at sensitivity = 0.90 / specificity = 0.72). 

Confusion matrices of predicted results compared with ground truth for all four datasets are 

shown in Table 5.3.  

 
Table 5.3 Confusion matrices for lesion classification results on artery slices of test sets for 

four datasets used in this study.  

Rows are ground truth and columns are predictions. Slices detected by LATTE but not 

annotated by radiologists were excluded from evaluations. 

Number of artery 
slices  

LATTE Prediction 
for CARE-II 

LATTE Prediction 
for CROP 

LATTE Prediction 
for IPH 

LATTE Prediction 
for Renji 

Nor
mal 
Arte
ry 

Earl
y 
Lesi
on 

Adv
ance
d 

Nor
mal 
Arte
ry 

Earl
y 
Lesi
on 

Adv
ance
d 

Nor
mal 
Arte
ry 

Earl
y 
Lesi
on 

Adv
ance
d 

Nor
mal 
Arte
ry 

Earl
y 
Lesi
on 

Adv
ance
d 
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Lesi
on 

Lesi
on 

Lesi
on 

Lesi
on 

Grou
nd 
truth 
from 
the 
radiol
ogist’
s 
classi
ficati
on 

Normal 
Artery 

25147 1472 2727 14052 4690 5534 6324 1208 1537 17173 4286 2389 

Early 
Lesion 

398 640 2588 821 2575 5548 447 1367 2578 1249 2324 2422 

Advan
ced 
Lesion 

222 122 4059 39 221 2314 63 284 3921 231 652 7943 

 
Sensitivity for 

advanced lesions 
0.92 0.90 0.92 0.90 

Specificity for 
advanced lesions 

0.84 0.67 0.69 0.84 

Sensitivity for all 
lesions 

0.92 0.93 0.94 0.90 

Specificity for all 
lesions 

0.86 0.58 0.70 0.72 

Weighted kappa 0.65 (0.65-0.65) 0.37 (0.36-0.38) 0.62 (0.61-0.63) 0.68 (0.67-0.68) 

Patient bootstrap 
weighted kappa 

0.64 (0.63-0.65) 0.41 (0.40-0.42) 0.55 (0.54-0.56) 0.59 (0.58-0.60) 

 
The domain adaptation applied on three unseen datasets (CROP, IPH, Renji) showed 

improvements on lesion classification compared with the baseline method of directly using the 

model trained from CAREII dataset to predict on unseen datasets. For example, the AUC for 

advanced lesion detection improved from 0.80 to 0.88, and the AUC for all lesion improved from 

0.80 to 0.83 for the CROP dataset. ROC curves before and after domain adaptation are shown in 

Figure 5.5. 
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Figure 5.5 Area under the receiver operating characteristic curve for advanced and all lesions 

before and after domain adaptation. 

5.3 SUMMARY 

In this chapter, we described LATTE, a domain adaptive and fully automated workflow with 

multiple AI modules, including image quality assessment, centerline generation, and especially 

lesion classification with domain adaptation. The combined application of 3D-MERGE and LATTE 

may offer a unique solution where clinical information of carotid atherosclerotic lesion is needed 

for effective and accurate identification and stratification of atherosclerotic disease severity.  

LATTE is a combination of uniquely designed CNN approaches. By incorporating human 

prior knowledge into the network design (such as using higher weights on patches with arteries in 

the image quality assessment model) and developed with large sample size (8 sites, 550 subjects, 

128,536 labeled artery slices), CNN is able to extract useful image intensity patterns to regress 

image quality score, locate artery regions, and classify lesions from the annotations of expert 

reviewers. Most importantly, without further supervised training, the lesion classification is shown 

to be adaptive to three different datasets (including different imaging parameters, coils and 
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scanners) by the specially designed domain adaptive CNN structure and training procedure. For 

vessel wall assessments on a large population from different sites, a domain adaptive and fully 

automated workflow may greatly reduce radiologists’ workload and assist their reading by 

prioritizing diseased artery segments to review. 

In addition, LATTE may have the following immediate clinical impacts: 1) during image 

acquisition, with accurate and fast image quality assessments, LATTE could alert the MR operator 

to rescan if insufficient image quality is found before the subject leaves the scanner, a more time 

efficient way to control image quality; 2) lesion classification allows high-risk artery segments to 

be highlighted so that radiologists may focus on the flagged location during the diagnostic review. 

The high sensitivity of lesion classification indicates significant reduction in manual workload and 

review time; and 3) with a user-friendly module to visualize the artery structures and lesion 

locations, radiologists could easily receive beneficial assistance from the AI tool without 

sophisticated training.  

In conclusion, the proposed domain adaptive and fully automated carotid atherosclerosis 

lesion assessment workflow (LATTE) can identify carotid atherosclerotic lesions with a high level 

of agreement with expert reviewers. Domain adaptation improves the lesion classification 

performance on new datasets without additional annotations, allowing smooth deployments of 

LATTE as a potentially usable AI solution for carotid atherosclerosis detection and assessment in 

clinical environments. 

More details of this approach can be found in our publications [114]–[117]. 
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Chapter 6. CONCLUSIONS 

In this dissertation, we proposed the Cafe family toolbox to construct the quantitative vasculature 

map using novel vascular image analysis techniques for 3D vascular images. The quantitative 

vasculature map is especially useful for atherosclerotic plaque assessments where both blood flow 

(through artery centerlines) and plaque morphometry (through vessel wall segmentation) features 

are important. The tracklet refinement/iCafe/AICafe approaches generate accurate artery 

centerlines for quantifying comprehensive region-based vascular structural features, proved to be 

useful in a series of vascular research studies. The additional voxel-wise segmentation of 

lumen/vessel wall regions (through Y-net, Polar segmentation or FRAPPE) further provides 

additional lumen and outer wall morphometry features. In addition, atherosclerotic lesion 

identification and classification are available through analyzing cross-sectional slices along 

centerlines by LATTE. With the vascular structural features, plaque morphometry features, and 

atherosclerotic lesion features, a quantitative vasculature map of human vasculature can be useful 

for both vascular research and clinical applications.  

The development of the Cafe family is not possible without the extensive use of AI techniques, 

which not only help to extract subtle features not possible from human designed feature 

descriptors, but also automate the image analysis workflow. With AI techniques, unbiased, 

accurate and meaningful vascular features can be extracted from large population studies for 

vascular research. The good performance of our AI models is partly due to the joint wisdom 

between human and machine. Guided by human wisdom by incorporating human’s prior 

knowledge on vasculature in the model design, AI techniques can quickly and robustly learn from 

human labels following human’s thinking patterns.  
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In addition, the contributions from our work also include constructing a large well curated 

vascular image dataset carefully labeled by the iCafe GUI, which is also a visualization platform 

for the quantitative vasculature map. Part of the dataset has been publicly available to encourage 

more research on vascular image analysis. 

The future work can be among three promising directions. 1) Extend the Cafe family toolbox 

to more vascular beds with more imaging modalities; 2) Construct a vascular feature bank to store 

vascular features along with clinical/diagnostic features to provide reference for new patients with 

similar subjects in the feature bank; 3) Transforming the Cafe family toolbox to products with easy 

access for medical workers. 
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APPENDIX A 

 

Useful links for more information. 

My full list of publications: https://clatfd.cn/cv#pub 

Our open-source repository and resources:  

 GNN artery labeling: https://github.com/clatfd/GNN-ART-LABEL 

 Domain adaptive lesion classification: https://github.com/clatfd/DANN 

 Polar segmentation: https://github.com/clatfd/PolarReg 

 OAI dataset vessel wall manual annotations: https://github.com/clatfd/OAI-Polar 

 Academic use of iCafe is available through reasonable request by sending email to lab 

manager Mr. Zach Miller (zach1@uw.edu) and Dr. Dongxiang Xu (xdx@uw.edu) 

 iCafe user guide: https://1drv.ms/w/s!AqZ4RxQg6dp-7XX7_yu1jXxpSbg7 

 iCafe demo video by Li Chen: 

https://www.youtube.com/playlist?list=PLxG3HeAddxYb_KQbL2fKNV5BW99yM

CksY 

As the organizer, we held the Carotid Artery Vessel Wall Segmentation Challenge endorsed 

by SMRA 2021 and MICCAI 2021, attracted 194 participants: https://vessel-wall-

segmentation.grand-challenge.org/ 

Project websites: 

 iCafe: http://icafe.clatfd.cn/ 

 FRAPPE: http://clatfd.cn/a/312 

 LATTE: http://clatfd.cn/a/321 
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