# Feature extraction and quantification to explore human vasculature

Li Chen Department of Electrical and Computer Engineering 8/9/2021

## Thanks for coming to my dissertation defense

- > Committee members:
- > Co-chairs: Dr. Jenq-Neng Hwang (ECE) and Dr. Chun Yuan (BIOE, Radiology)
- > GSR: Dr. Shuyi Chen (Atmospheric Sciences)
- > Members: Dr. Linda Shapiro (ECE, CSE) and Dr. Ming-Ting Sun (ECE)
- > All the audience

#### **Overview**

#### > Background

- > Quantitative vasculature map construction
  - Artery centerline generation
  - Lumen and vessel wall segmentation
  - Atherosclerotic lesion identification and classification
- > Conclusions and future directions

## Background: vascular health

- > Vascular disease: top death causes worldwide
- > Atherosclerosis: cause of ischemic strokes
  - Plaque growth -> Risk of rupture
  - Narrowing lumen -> Reduction in distal flow

#### Leading causes of death globally





accumulating plaque UNIVERSITY of WASHINGTON 4 Image from <u>mayoclinic</u>

#### Background: MRI for human vasculature

> A complex and vital system visualized by Magnetic Resonance Imaging (MRI)



## Background: existing vascular analysis techniques

#### > Focused on specific analysis tasks

- Artery tracing
- Artery anatomical labeling
- Vessel wall segmentation
- > Limited capability



Artery tracing for large arteries with good contrast alone [1]

[1] Volkau, 2005. [2] Robben, 2016. [3] Gao, 2017.



Artery labeling on major arteries with little variations [2]



Vessel wall segmentation with rough contours [3] UNIVERSITY of WASHINGTON 6

#### Aim: Quantitative vasculature map

- > A *quantitative vasculature map* needed for comprehensive features
  - Construct centerlines to quantify artery structural features
  - Segment vessel wall to quantify plaque morphometry features
  - Locate disease regions and classify severity of plaques for lesion features
- > Automation desired
  - Unbiased, fast and robust
- > Challenges
  - Tiny region, variable signals, limited samples

#### Overview

#### > Background

- > Quantitative vasculature map construction
  - Artery centerline generation
  - Lumen and vessel wall segmentation
  - Atherosclerotic lesion identification and classification
- > Summary and future directions



[A1] Li Chen, et. al, Magnetic resonance in

medicine, 2018.

[A2] Li Chen, et. al, Magnetic resonance

imaging, 2018.

[A3] Li Chen, et. al, RSNA, 2017.

[A4] Li Chen, et. al, MICCAI 2021.

[A5] Li Chen, et. al, MICCAI 2020.

## Related work: Snake (active contour model)

#### > Snake [1]

- Initial closed contour slithers to find salient object
- Internal energy: control contour shape
- External energy: control contour fitness to objects
- > Open curve snake [2] (OCS):
  - Stretch from seeds
  - Open curve
- > iCafe [A1]: optimized on MRA intracranial artery tracing



Initial contour and final contour using snake

[1] Kass, 1988. [2] Wang, 2011.

#### Previous work: iCafe

- > Accurate [A2] but requires extensive human supervisions
- > Existing problems:
  - Parallel arteries; Sensitive to initial contours; No global structure

Two parallel arteries Tables info landmark per seed 111 vessel (f) (a) (b) (c) (d) (e) **Output and** Image Lumen Artery **Feature Vessel Tracing** Preprocessing Segmentation Labeling **Calculation** Analysis • Phansalkar Improved Open-• Maximum a Curve Snake threshold [1] Posteriori [A3] Manual editing Manual correction UNIVERSITY of WASHINGTON 10 [1] Phansalkar, 2011.

#### Al+iCafe=AlCafe for automated artery centerline generation

- > Processed iCafe traces + artificial intelligence (AI) = automated process (AICafe)
- > Same workflow but with AI modules



[1] Wang, 2020. [2] Zhang, 1984.

## Step 1: Centerline segmentation and curve proposal

- > Distance transform [1]: voxels near artery center have higher probability
- > Segmentation network: U-Net [2] with two outputs
  - Probability map: distance transformed map (trained with L2 loss)
  - Binary mask: vascular region (trained with binary cross-entropy loss)
- > When prediction, binarize the probability map and skeletonization



UNIVERSITY of WASHINGTON 12

[1] Wang, 2020. [2] Ronneberger, 2015.

#### Step 2: Deep open snake tracing

> Deep learning to decide stretching direction and estimate radius
> Snake framework ensures smoothness and fitness



#### Step 3: Global tree constraint

> Intracranial arteries: a tree without broken branches or loops

- > 1. Tentative connections for neighboring snakes
- > 2. Snake graph construction: nodes=traces, edges=connection loss (estimated by intensity fitness) between traces
- > 3. Break loops in the snake graph by minimum spanning tree



#### Intracranial artery tracing using AICafe on an MRA



#### Qualitative comparisons with other tracing methods



## Quantitative comparisons with other tracing methods

|                            |             | Tracking accu | uracy metrics     | Multi-object tracking metrics |       |       |  |
|----------------------------|-------------|---------------|-------------------|-------------------------------|-------|-------|--|
| Tracing approach           | Model name  | Overlap↑      | Mean<br>distance↓ | ΜΟΤΑ个                         | IDF1个 | IDS↓  |  |
| Traditional segmentation   | Frangi      | 0.617         | 0.956             | 0.238                         | 0.621 | 343.9 |  |
| Deep learning segmentation | U-Net       | 0.662         | 0.724             | 0.300                         | 0.696 | 398.3 |  |
| Deep learning segmentation | DDT         | 0.683         | 0.703             | 0.281                         | 0.712 | 423.0 |  |
| Traditional tracking       | OCS*        | 0.672         | 0.356             | 0.372                         | 0.694 | 74.8  |  |
| Deep learning tracking     | CNN tracker | 0.562         | 0.860             | -0.312                        | 0.595 | 108.5 |  |
| Deep learning tracking     | DCAT        | 0.564         | 0.943             | -0.241                        | 0.601 | 137.8 |  |
| Hybrid                     | DOST (Our)  | 0.732         | 0.592             | 0.318                         | 0.731 | 104.1 |  |

\* Ground truth was modified manually based on OCS results

#### A broadly applicable artery tracing solution

Original image (MIP or Slice view)

> Deep open snake tracer





Intracranial TOF MRA

Intracranial T1 VISTA (black blood)





Coronary CTA Carotid MERGE (black blood) UNIVERSITY of WASHINGTON 18

#### Step 4: Artery landmark prediction from graph neural network

- > Intracranial artery centerlines: a natural graph
  - nodes=bifurcation/ending points, edges=having connections between nodes
- > Input: a graph with node/edge features
- > A message passing Graph Neural Network (GNN)
- > Output: a graph with more features (including node and edge type)



## Step 5: Hierarchical refinement on artery labels

#### > End-to-end prediction is not perfect

- > Hierarchical labeling framework: human + machine knowledge
  - Three-layer labeling from most confident nodes to optional branches
  - Robust for anatomical variations



#### Quantitative comparisons with other labeling methods

| Method       | Node_Acc<br>个 | Node_Wro<br>ng↓ | Node_Solv<br>e↑ | CoW_Nod<br>e_Solve↑ | Edge_Acc | Edge_Solv<br>e↑ | Process<br>time (s) ↓ |
|--------------|---------------|-----------------|-----------------|---------------------|----------|-----------------|-----------------------|
| ΜΑΡ          | 0.9153        | 10.0            | 0               | 0.0476              | 0.3304   | 0               | 1.075                 |
| Template     | 0.7316        | 31.6            | 0               | 0.0476              | 0.7934   | 0               | 5.057                 |
| Atlas        | 0.8856        | 13.5            | 0               | 0.0095              | 0.7010   | 0               | 9.253                 |
| GNN          | 0.9637        | 4.3             | 0.0381          | 0.4286              | 0.9223   | 0               | 0.020                 |
| GNN+HR (Our) | 0.9746        | 3.0             | 0.3238          | 0.6381              | 0.9246   | 0.3238          | 0.092                 |

#### Overview

- > Background
- > Quantitative vasculature map construction
  - Artery centerline generation
  - Lumen and vessel wall segmentation
  - Atherosclerotic lesion identification and classification
- > Summary and future directions



[B1] Li Chen, et. al, IEEE International Conference on

Bioinformatics and Biomedicine (BIBM), 2017.

[B2] Li Chen, et. al, ISMRM, 2018.

[B3] Li Chen, et. al, IEEE Access, 2020.

[B4] Li Chen, et. al, Magnetic resonance in medicine,

2020.

#### From centerlines to lumen/vessel wall feature extraction



#### Segment lumen areas from bright blood MRA

- > From iCafe traces to train lumen segmentation
- > Y-net [B1]: 3D patch-based CNN segmentation
- > Patch origin added as the additional information

![](_page_23_Figure_4.jpeg)

![](_page_23_Figure_5.jpeg)

## Problem of vessel wall segmentation using Cartesian CNN

![](_page_24_Figure_1.jpeg)

#### Polar vessel wall segmentation [B3]

#### > Benefits of polar segmentation

- Neighboring arteries (ECA) are quite different from the artery of interest (ICA).
- Contours are represented as two vertical lines, easy to ensure continuity.

![](_page_25_Figure_4.jpeg)

#### Dual output network for segmentation + confidence

![](_page_26_Figure_1.jpeg)

#### An example of polar segmentation at a challenging slice

![](_page_27_Figure_1.jpeg)

<sup>[1]</sup> U-Net: Ronneberger, 2015. [2] Mask-RCNN: He, 2017.

## iCafe+: intracranial centerline + vessel wall feature

#### > With transfer learning and active learning from carotid segmentation model

![](_page_28_Picture_2.jpeg)

MR VWI (and/or MRA) images for intracranial arteries

iCafe or AlCafe tracing

![](_page_28_Picture_5.jpeg)

![](_page_28_Picture_6.jpeg)

![](_page_28_Picture_7.jpeg)

Combine segmentation results into color coded vascular map

Vessel wall segmentation

![](_page_28_Picture_10.jpeg)

**Cross-sectional slice** 

![](_page_28_Picture_13.jpeg)

Color coded vascular map (redder means thicker wall) Red arrow indicate the example cross-sectional location **UNIVERSITY** of WASHINGTON 29

#### Overview

- > Background
- > Quantitative vasculature map construction
  - Artery centerline generation
  - Lumen and vessel wall segmentation
  - Atherosclerotic lesion identification and classification
- > Summary and future directions

![](_page_29_Picture_7.jpeg)

[C1] Li Chen, et. al, ISMRM 2019.

[C2] Li Chen, et. al, Magnetic resonance in

medicine, 2021.

[C3] Hongjian Jiang, Li Chen, et. al, SPIE, 2020,

#### LATTE: Atherosclerotic lesion identification and classification

- > Fast MR solution for carotid artery assessment
- > Aims
  - Locate artery, vessel wall segmentation and classify severity of plaques
  - Large coverage with less imaging/process time
  - Deployable to multiple sites
- > Existing technique: tracklet refinement [B3]
- > Challenges
  - Exclude low quality slices/scans
  - Domain adaptive for multiple sites

Normal Artery Early Lesion Advanced Lesion

![](_page_30_Picture_11.jpeg)

![](_page_30_Picture_12.jpeg)

Carotid arteries identified by our Yolo [1] based tracklet refinement algorithm [B3] UNIVERSITY of WASHINGTON 31

[1] Redmon, 2017. LATTE: Lesion Assessment Through Tracklet Evaluation [C1] [C2] Tracklet refinement

## LATTE workflow

![](_page_31_Figure_1.jpeg)

[1] Balu, 2011.

#### Domain shift among datasets

![](_page_32_Picture_1.jpeg)

## **Causes of domain**

- Scanner
- Image size
- Imaging resolution
- Coverage
- Echo time / Repetition time in MR imaging

#### Domain adaptive CNN with its training strategy

![](_page_33_Figure_1.jpeg)

![](_page_33_Figure_2.jpeg)

UNIVERSITY of WASHINGTON 34

Enlighted from Ganin, 2015. Published in [C2]

#### Quantitative performance evaluation for domain adaptation

- Evaluation by area under the Receiver operating characteristic curves (AUC) before and after domain adaptation
- > No additional annotations required for target datasets (CROP, IPH and Renji)

![](_page_34_Figure_3.jpeg)

#### **Overview**

#### > Background

- > Quantitative vasculature map construction
  - Artery centerline generation
  - Lumen and vessel wall segmentation
  - Atherosclerotic lesion identification and classification

#### > Summary and future directions

## Conclusions

> Novel vascular analysis toolset (*the Cafe family*) for quantitative vasculature map:

- Comprehensive features: artery structure + plaque morphometry + lesion severity
- Automated and robust, suitable for large studies

![](_page_36_Figure_4.jpeg)

comprehensive features UNIVERSITY of WASHINGTON 37

#### Conclusions

- > Artificial intelligence on vascular image analysis
  - Extract subtle patterns not easily describable
  - Human and machine wisdom combined for better performance
  - Progressively improving performance
- > Contribute to vascular research
  - iCafe tool distributed under academic licenses
  - Datasets for intracranial artery labeling [1] and vessel wall segmentation [2]
  - Vessel wall segmentation challenge (MICCAI/SMRA 2021) [3] with 200+ participants

[1] https://github.com/clatfd/GNN-ART-LABEL

[2] https://github.com/clatfd/OAI-Polar

[3] https://vessel-wall-segmentation.grand-challenge.org/

#### The Cafe family further our understanding on vascular disease

![](_page_38_Figure_1.jpeg)

From Chen, Neurobiology of Aging, 2019 and Canton, JAHA, 2021.

#### **Future directions**

- > Further improve the performance
- > Extend the Cafe family toolbox to more vascular beds with more imaging modalities
- > Construct a vascular feature bank to store vascular features along with clinical data to provide reference for new patients with similar features in the feature bank
- > Transforming the Cafe family toolbox to products with easy access for medical workers

## Artery centerline generation related publications

#### iCafe development:

- 1. Li Chen, et. al, Jenq-Neng Hwang, Chun Yuan. Development of a quantitative intracranial vascular features extraction tool on 3D MRA using semiautomated open-curve active contour vessel tracing. Magnetic resonance in medicine (IF:3.9), 2018, 79 (6), Pages 3229-3238. Editor's pick.
- 2. Li Chen, et. al, Jenq-Neng Hwang, Chun Yuan. Quantification of morphometry and intensity features of intracranial arteries from 3D TOF MRA using the intracranial artery feature extraction (iCafe): A reproducibility study. Magnetic Resonance Imaging (IF:2.1), 2019, 57 (April 2019), Pages 293-302.
- **3.** Li Chen, et. al, Jenq-Neng Hwang, Chun Yuan. A Novel Algorithm for Refining Cerebral Vascular Measurements in Infants and Adults. Journal of Neuroscience Methods (IF:2.8), 2020, 340 (1 July 2020), Pages 108751.

#### AlCafe development:

- 4. Li Chen, et. al, Jenq-Neng Hwang, Chun Yuan. Simultaneous Intracranial Artery Tracing and Segmentation from Magnetic Resonance Angiography by Joint Optimization from Multiplanar Reformation. MICCAI CVII-STENT 2019 workshop, 2019, Shenzhen, China (October 13), Pages 201-209.
- 5. Li Chen, et. al, Jenq-Neng Hwang, Chun Yuan. Automated Intracranial Artery Labeling using a Graph Neural Network and Hierarchical Refinement. MICCAI 2020, Lima, Peru.
- 6. Li Chen, et. al, Jenq-Neng Hwang, Chun Yuan. Deep Open Snake Tracker for Vessel Tracing. MICCAI 2021, Strasbourg, France.

#### Artery centerline generation related publications

#### iCafe applications:

- Li Chen, et. al, Jenq-Neng Hwang, Chun Yuan. Quantitative Assessment of the Intracranial Vasculature in an Older Adult Population using iCafe (intraCranial Artery Feature Extraction). Neurobiology of Aging (IF:4.4), 2019, 79 (July 2019), Pages 59-65.
- 8. Li Chen, et. al, Jenq-Neng Hwang and Chun Yuan. Quantitative Assessment of the Intracranial Vasculature of Infants and Adults using iCafe (intraCranial Artery Feature Extraction). Frontiers in Neurology (IF:2.9), 2021, 28 May 2021.
- 9. Zhensen Chen, Li Chen, et. al, Chun Yuan. Intracranial vascular feature changes in time of flight MR angiography in patients undergoing carotid revascularization surgery. Magnetic Resonance Imaging (IF:2.1), 2020, 75 (January 2021), Pages 45-50.
- 10. Wenjin Liu, Xiaoqin Huang, Xuebing Liu, Dakota Ortega, Li Chen, et. al, Uncontrolled hypertension associates with subclinical cerebrovascular health globally: a multimodal imaging study. European Radiology (IF:4.1), 2020, 14 September 2020. DOI: 10.1007/s00330-020-07218-5

## Lumen/vessel wall segmentation related publications

#### Lumen segmentation development

 Li Chen, et. al, Jenq-Neng Hwang, Chun Yuan. 3D intracranial artery segmentation using a convolutional autoencoder. 2017 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 2017, Kansas City, MO, USA

#### Lumen and outer wall segmentation development

- Li Chen, et. al, Jenq-Neng Hwang, Chun Yuan. Automated Artery Localization and Vessel Wall Segmentation of Vessel Wall Images using Tracklet Refinement and Polar Conversion. IEEE Access, 2020, 8, Pages 217603-217614.
- **13.** Li Chen, et. al, Jenq-Neng Hwang, Chun Yuan. Fully automated and Robust Analysis Technique for Popliteal Artery Vessel Wall Evaluation (FRAPPE) using Neural Network Models from Standardized Knee MRI. Magnetic resonance in medicine (IF:3.6), 2020, 84, Pages 2147–2160.

#### Vessel wall segmentation applications

- Gador Canton, Daniel Hippe, Li Chen, et. al, Chun Yuan. Atherosclerotic Burden and Remodeling Patterns of the Popliteal Artery as detected in the MRI Osteoarthritis Initiative Dataset. JAHA: Journal of the American Heart Association (IF:4.67), 2021, 10 (11).
- Daniel Hippe, Niranjan Balu, Li Chen, et. al, Jenq-Neng Hwang, Chun Yuan. Confidence weighting for robust automated measurements of popliteal vessel wall MRI. Circulation: Genomic and Precision Medicine (IF:4.9), 2020, 13 (1), Pages 39-41.
   UNIVERSITY of WASHINGTON 43

#### Atherosclerotic plaque assessment related publications

- **16.** Li Chen, et. al, Jenq-Neng Hwang, Chun Yuan. Carotid Artery Localization and Lesion Detection on 3D-MERGE MRI through Online Learning. Society for Magnetic Resonance Angiography 30th Annual International Conference, SMRA 2018, University of Glasgow, Glasgow, Scotland.
- 17. Li Chen, et. al, Jenq-Neng Hwang, Chun Yuan. Carotid Artery Localization and Lesion Classification on 3D-MERGE MRI using Neural Network and Object Tracking methods. 2019 Annual Meeting of International Society for Magnetic Resonance in Medicine (ISMRM), 2019, Palais des congrès de Montréal, Montréal, QC, Canada
- **18.** Li Chen, et. al, Jenq-Neng Hwang, Chun Yuan. Domain Adaptive and Fully Automated Carotid Artery Atherosclerotic Lesion Detection using an Artificial Intelligence Approach (LATTE) on 3D MRI. Magnetic resonance in medicine (IF:3.6), 2021, 86 (3), Pages 1662-1673.
- 19. Hongjian Jiang, Li Chen, et. al, Chun Yuan. A Target-Oriented and Multi-Patch Based Framework for Image Quality Assessment on Carotid Artery MRI. Medical Imaging 2020: Image Processing. SPIE, 2020, Marriott Marquis Houston, Houston, Texas, United States (February 15 20).
- **20.** Duygu Geleri, Hiroko Watase, Baocheng Chu, **Li Chen**, et. al, Chun Yuan. Detection of Advanced Lesions on Carotid Arteries using 3D-MERGE Magnetic Resonance Imaging as a Screening Tool. **Stroke** (IF:7.2), 2021,

#### Acknowledgements

- > Thanks for the advices from advisors and committee members.
- > Thanks for the support from Information Processing Lab and Vascular Imaging Lab.
- > We acknowledge the contributions from
  - Our collaborators: CARE-II, CROP, Kowa, OAI, BRAVE, University of Arizona researchers, etc.
  - Open-source resources owners: Dr. Yu Wang from Rensselaer Polytechnic Institute, Dr. Elizabeth Bullitt from UNC, the DeepMind group, etc.
- > Thanks for the funding supports from Philips healthcare, National Institute of Health, and American Heart Association.
- > We gratefully acknowledge the support of NVIDIA Corporation for donating the Titan GPUs.

## Thanks for your attention!

![](_page_45_Picture_1.jpeg)

Information Processing Lab Department of Electrical and Computer Engineering University of Washington

![](_page_45_Picture_3.jpeg)

Vascular Imaging Lab Department of Radiology University of Washington UNIVERSITY of WASHINGTON 46

# Questions and answers

Thanks for your attention