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e QOur strategy is an improvement to acquaintance immunization strategy.
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The acquaintance immunization strategy is a common strategy to suppress epidemic on complex
network which achieves a seemingly perfect balance between cost and effectiveness compared with
other canonical immunization strategies. However, the acquaintance immunization strategy fails to take
the time-varying factor and local information of nodes into consideration, which limits its effectiveness
in some specific network topology. Our improved immunization strategy is based on a new mathema-
tical model Network Structure Index (NSI), which digs deep to measure the connection property and
surrounding influence of a node's neighbor nodes to better determine the importance of nodes during
immunization. Both mathematical derivation and the simulation program tested on various network
topology support our idea that this improved acquaintance immunization strategy protects more nodes
from infection and immunizes important nodes more efficiently than the original strategies. As to say,
our strategy has more adaptability and achieves a more reasonable balanced point between cost and

effectiveness.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Epidemic is an important issue to our lives. Both worm virus on
Internet and Ebola virus disease spreading rampantly in Africa
have caused great threat and panic to the masses. The suppression
of epidemic attracts much attention in recent decades. Generally,
there are several classic immunization strategies to suppress the
epidemics on networks such as the random immunization
(Anderson and May, 1992), the target immunization (Dobrescu,
2007), and the acquaintance immunization (Cohen et al., 2003). All
of these strategies are conditioned by the immunization cost and
immunization effectiveness, which are influenced by network
topology, information of the network we have, possibility of virus
spreading, size of the network, etc. Following are the obvious
limitations of these three classic strategies.
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Random immunization strategy immunizes a node randomly. It
requires high immunization threshold which means it need
immunize a very large fraction of a network to be effective. Target
immunization strategy immunizes a node with most neighbor
nodes. It is of great accuracy and effectiveness, but it is based on
global information about the network, which is not available for
most occasions. Acquaintance immunization strategy avoids the
disadvantages of the previous strategies. It randomly chooses a
node and randomly immunizes one of its neighbor nodes. Little
information about networks is required, but randomly immuniz-
ing neighbor node is of blindness and is not efficient enough to
protect important nodes, especially to some particular network
topology.

As all these existing canonical strategies have their obvious
limitations, we badly need an improved strategy which is more
adaptive to almost all network topology and achieve a better
balance between cost and effectiveness.

In recent years, many research works have shown up to present
new ideas of finding a more effective and practical immunization
strategy. Many of these methods are based on the acquaintance
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immunization, focusing on finding common neighbors (Pan Liu,
2009), searching out highly connected nodes to build a threaded-
tree (Chai et al., 2011), double- immunization strategy (Jing et al.,
2012), etc. These methods are effective in certain situation, how-
ever, they cannot avoid the limitation of the acquaintance immu-
nization effectively. Other researchers focus on the importance
ranking of nodes, which is to determine the ranking with a time-
varying perspective (Starnini et al., 2013; Hill and Braha, 2010) or
local information (Xin et al., 2011; Hadjichrysanthou and Sharkey,
2015), but these methods fail to deploy the benefits of acquain-
tance immunization strategy.

The immunization strategy based on acquaintance immuniza-
tion provides a strong adaptability of various network structure
using little information about the whole network; determining the
importance of nodes with local and time-varying information
ensures the accuracy during the immunization. So we propose a
strategy combining these two benefits may be an innovative
approach towards an effective and practical immunization strategy
which can also achieve the balance between the amount of
information we need and the result we can achieve.

In this paper, we start from a specific topology and propose the
idea that the connection property and surrounding influence of
nodes should not be neglected during immunization, which also
reveals the limitation of the acquaintance immunization strategy.
Based on that, we create a new index, Network Structure Index
(NSI) to comprehensively assess the value, especially the potential
value of nodes. With NSI which considers local and time-varying
factor of a node, we improved the acquaintance immunization
strategy by immunizing the neighbor node with highest NSI value.
After that, mathematic derivation and computer simulation are
used to support the advantage of our strategy.

2. Model
2.1. Possible improvements on acquaintance immunization

In many situations, it is so hard for us to acquire the global
information about the network. Comparatively we can easily get
the information of a selected node from the local network,
especially some information of its nearby neighbors. In that case,
target immunization is still not applicable, but acquaintance
immunization can be greatly improved via changing the process
of immunization with the help of its neighbor information and
immunizing a most valuable neighbor instead of a random one.

Network is made up of many nodes and connections. We can
easily notice that the importance of each node is diverse. Before
we take actions to suppress the epidemics on networks, we need
to find an objective value to give us reference about which node is
worth protecting

The degree of node is a possible reference. The degree is the
number of its links connected to other nodes. One solution is to
immunize the neighbor node with highest degree. But the solution
is not ideal in some occasions such as the case shown in Fig. 1.

Node 1 marked in red is the randomly selected node which is
able to immunize a neighbor node. Its neighbor node 2 has a
degree of four, while neighbor node 3 has a degree of two, but
clearly we should immunize node 3 instead of node 2 because it
has much more child nodes than node 2.

Another possible solution is to immunize the neighbor node
with highest betweenness centrality. Betweenness centrality is
equal to the number of shortest paths from all vertices to all others
that pass through that node. It is an obvious and useful measure of
both the load and importance of a node, but the calculation needs
the knowledge of a large part of network topology, which is not

Fig. 1. One occasion when immunizing top degree neighbor node is not ideal.

easy to realize. As to say, if we have known the whole network
topology, we would choose the target immunization instead.

So creating a new and low cost index to assess the value of each
node is of top priority. The index should not only consider its
degree, but also reflects its connection property and surrounding
influence in its nearby sub-network as well.

We create such index called Network Structure Index (NSI).

2.2. Network Structure Index (NSI)

Suppose there is a network with m nodes. We can use an msm
matrix to describe the connectivity of the network. We know that
the connection properties and defense systems of each connection
are not the same, so the possibility a node to be infected is not the
same to each other. To have a clear view of that possibility, we
define the p; which means node i has a percentage of p; spreading
virus to node j. p;=0 means that node i and node j are not
connected.

DP11,P125 -+ »D1m
.. . DP21,P225 ----- N2
The connectivity matrix P =
Pwm1-Pmzs -+ >Dvm

Each node has different values. For example, computers used in
banks are much more important than computers used for enter-
tainment at home, we define the value of node i as v; to mark their
difference. To be normalized, v;=1 represents the nodes with
highest importance (0 <i< M).

So when the node i is infected and starts spreading virus, the
potential damage to node j is dj=p;#v;. If node i and node j is
connected directly, d;j is a positive number, otherwise it is zero.

Before we look into the influence of a node in its nearby sub-
network, we must have a clear view of nodes surrounding it and
classify them into groups according to their importance. A node
has neighbors which are the nodes connected directly with the
node, it also has level 2 neighbors which are the neighbors of its
neighbors, and so on. We can mark them as level 1-level T with
the following steps. T is the number of top level we choose to stop
the marking process.

Firstly, mark the node we choose to analyze (node 1 in Fig. 2) as
level 1 (painted blue in Fig. 2).

Secondly, mark the nodes which have direct connection with
level 1(node 2, 3, 4, 5) as level 2 (painted green in Fig. 2).

Thirdly, from each node of level 2, mark nodes which have
direct connection with it (nodes 6, 7, 8, 9, 10 in Fig. 2) as level 3
(painted gray in Fig. 2). If the node has already been marked,
ignore them (node 5 in Fig. 2).

Fourthly, mark higher level numbers from previous level nodes
until the level T.
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Fig. 2. An example of marking neighbor levels. The large blue node is the node we
choose to analyze, the green and gray ones are its level 2 and level 3 neighbor
nodes. Numbers in the circles are its IDs. Number of Top level in this graph is 3. (For
interpretation of the references to color in this figure, the reader is referred to the
web version of this article.)

After the classification, we can count numbers of connections
between two adjacent levels as n; The total potential damage
through connections between level G nodes to level H nodes is

Len=Y_> d;
i

where i is all the nodes in level G, j is all the nodes in level H. G,
H<T
We can arrange them in a TsT matrix N

"Ly L X X X X 7
Ly Lyp L - X X X
X L3y L3 X X X
N= : " :
X X X Lr-aa-2 Lo-ar-1 X
X X X Lr_va-2 Lr-—var-1 Lr-ur
X X X X Lrq—1y Lyr

X in matrix N means that there is no possibility to have
connections between these two levels, so X is always equal to zero.

When we view a sub-network, we care different levels with
different emphasis. A manually controlled ey should be defined to
present our perspective and show our emphasis. For example, in
this virus spread issue, connections in level 1 and level 2 should be
paid more attention than level 2 and level 3, so e, > e;s. In order
to be normalized, e is within the range of 0-1 as well.

_L“*En L12*912 X X X X _
Lyi%key1  Ljyy%eyy Lysxlys ... X X X
X Lyxe3;  Lazkess X X X
E= : :
X X X L or-2%€r-27-2) La-ar-n*er—_2T-1) X
X X X Lr_ya-2*er_1r-2 Lr-na-v*er_nr-1 La_nreer_nr
X X X X Ly —1y*err 1) Lirserr

X is always equal to zero.

We can find that all positive numbers are located in the narrow
stripe in the diagonal, add them all, the result is the Network
Structure Index (NSI).

NSI = Lyys%eqq1 +Lia%eip + Ly 1)%erq_1)

T-1

+Lrrserr + Z (Lo - 1y*€GG—1)+Loc*ecc + Lo+ 1y*€cc+1))
=

NSI is a useful index for reference, which reveals the level
structure, dimension, value of nearby nodes and vulnerability of a
network. The high NSI means that the network structure is low in

number of levels, large in scale, high in node value. So it is easy to
spread fast and need special care and immunization as soon as
possible.

2.3. In-depth acquaintance immunization

From Fig. 1, we know that attention should not only be paid to
level 1 neighbor, but also higher number level nodes. NSI, with a
node's connection property and influence in its nearby sub-
network considered, is an ideal index to refer to. So we improve
the acquaintance immunization strategy by immunizing the
neighbor node with highest NSI value. As NSI is created by digging
deep to find In-depth properties of a node, we call this improved
strategy In-depth acquaintance immunization.

The complete procedure of In-depth acquaintance immuniza-
tion is listed as below.

Step 1, randomly select a node from the network.

Step 2, find all its neighbor nodes which have not been
immunized. If all its neighbor nodes have been immunized,
restart the process from Step 1. If no node has neighbors, jump
to Step 10.

Step 3, according to the information we can acquire from the
chosen node and its nearby sub-network, define a connectivity
matrix P to list all connection possibilities between nodes. If
some connections are unable to find their connection possibi-
lities, set them as average value of 0.5.

Step 4, define a suitable maximum level T for level classifica-
tion. T should not be too small to waste information. And it
should not be too large for there may not enough information
and larger T means more time to calculate.

Step 5, define a set of suitable variables egy to represent our
concern about different levels. In general, egy with smaller G
and H should be defined a larger number.

Step 6, define a set of node values v; to assess the node damage
cost. If some neighbor nodes are unable to assess their value,
set them as average value of 0.5.

Step 7, calculate NSI for every neighbor node.

Step 8, immunize the neighbor node m which has not been
immunized with highest NSI value. Change column m in P
matrix to 0, meaning no nodes can connect to node m forever.

Step 9, choose the immunized node as the next selected node.
Repeat the process from step 2.

Step 10, from node 1 to node M, immunize nodes which have
not been immunized one at a time.

Fig. 1 is shown as an example.

Suppose node 1 is the randomly selected node. It has two
unimmunized neighbor nodes 2 and 3. We know most of its
neighbor connection possibilities, but possibilities of some con-
nections (8-11, 8-12 and 10-13) are unknown, SO ps(11), Ps(12) P(10)
(13)20.5.

We find that many nodes existed as level 4 nodes under node 3,
so we can define T as 4.



L. Chen, D. Wang / Journal of Theoretical Biology 385 (2015) 58-65 61

P =10.00,0.58,0.61,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00;
0.31,0.00, 0.00,0.00,0.90,0.74,0.62,0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00;
0.57,0.00, 0.00,0.54, 0.00,0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00;
0.00,0.00,0.13,0.00, 0.00,0.00,0.00,0.74,0.85,0.53,0.00, 0.00,0.37,0.00, 0.00;
0.00,0.98, 0.00,0.00, 0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00;
0.00,0.78, 0.00,0.00, 0.00,0.00,0.00, 0.00,0.00, 0.00,0.00, 0.00,0.00, 0.00, 0.00;
0.00,0.70, 0.00,0.00, 0.00,0.00,0.00,0.00,0.00, 0.00,0.00, 0.00,0.00, 0.00,0.00;
0.00,0.00, 0.00,0.44, 0.00,0.00, 0.00, 0.00, 0.40, 0.00, 0.50, 0.50,0.00, 0.00, 0.00;
0.00,0.00, 0.00,0.80, 0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.63,0.41;
0.00,0.00,0.00,0.61,0.00,0.00,0.00,0.00,0.00,0.00,0.16,0.00,0.50, 0.00, 0.00;
0.00,0.00, 0.00,0.00, 0.00,0.00,0.00,0.92,0.00, 0.36,0.00, 0.00,0.00, 0.00, 0.00;
0.00,0.00, 0.00,0.00, 0.00,0.00,0.00,0.38,0.00, 0.00,0.00, 0.00,0.00, 0.00, 0.00;
0.00,0.00, 0.00,0.18, 0.00,0.00,0.00,0.00,0.00,0.58,0.00,0.00,0.00, 0.00,0.00;
0.00,0.00, 0.00,0.00, 0.00,0.00,0.00,0.00,0.13, 0.00, 0.00, 0.00,0.00, 0.00, 0.00;
0.00,0.00, 0.00,0.00, 0.00,0.00, 0.00,0.00,0.7,0.00,0.00,0.00,0.00, 0.00,0.00]

A suitable set of ecy is listed for reference.
eGH(4) = [00, 10, 00, OO,

1.0,0.6,0.5,0.0;
0.0,0.5,0.3,0.2;
0.0,0.0,0.2,0.1;]

v;=[1.0,0.6,0.6,0.3,0.5,0.7,0.8,0.5,0.3,0.3,0.7,1.0,0.3,0.2,0.4]

Node 5 and 8 are unable to assess their value, so v5 and vg=0.5.

According to NSI algorithm, neighbor node 2 has an NSI of
2.914, while neighbor node 3 has a larger NSI of 3.586, so we
choose node 3 to immunize. p;3 and p43=0.

Then node 3 becomes the next selected node which is able to
immunize one of its neighbor nodes. The network level becomes
lower, so there is no need to choose T as 4, we define T as 3 this
time.

€cHE) = [00, 1.0,0.0;

1.0,0.6,0.5,
0.0,0.5,0.3]

Its neighbor node 1 has an NSI of 1.483, while neighbor node
4 has a larger NSI of 2.8279, so we choose node 4 to immunize this
time. Set psa, Pga, Poa, P(10)4 P(13)a=0.

Then node 4 becomes the next selected node. Its unimmunized
neighbor nodes 8, 9, 10, 13 have NSI of 1.61, 0.539, 0.949, 0.434
respectively. So the immunization should be applied to node 8.

From these three immunizations, we can find that every node
immunized is of great importance under such circumstances.
These immunizations have effectively disconnected these hub
nodes or key nodes in the sub-network, greatly reducing the
possibility of epidemic spread in the sub-network.

We can also find the benefit of selecting nodes previously
immunized as the start of next round immunization is that hub
nodes in deeper layer can be traced automatically. Node 4 in Fig. 1
is a large hub in level 3 from the perspective of node 1, but its
potential value is presented by NSI of node 3, whose Ngy between
level 2 and level 3 is 1.08, and Ngy between level 3 and level 4 is
0.78, taking up a percentage of 51.9% in its NSI, greatly enhancing
that value, enabling NSI of node 3 greater than node 2 and veering
the immunization direction towards node 4.

2.4. Mathematical justification

Scale-free network is a classic network topology and we can
change the spread rate of virus to let it be more close to the real
network. According to the characteristic of scale-free and

continuous growth of real network, the virus spread tends to
grow into a stable state and we can find the threshold value.

As we mentioned before, our method is influenced by two
uncertain parameter d; and ecy. So we cannot verify its effective-
ness directly and need another conclusion as a bridge to get the
conclusion. The conclusion is if we choose the nth central point
among (n—1)th central point's neighbor instead of choosing it
randomly, more nodes in the network will be immunized during a
certain period.

The following are the analysis and certification. First, we need
define the concept ‘layer’ in advance. The layer of a particular point
means the shortest hop distance from the starting point which can
be likely to be immunized (we need update the layer information
to avoid possible loop). We assume there are ny(k’) nodes of degree
k' in some particular layer I which means that excluding the node
we pass through, there are only k—1 new nodes in layer [+ 1. At
the same time, we denote the event that a k-degree node is access
to the disease as s;. To compute the number of susceptible nodes
in layer [+ 1, we have the following equation:

M1 (k) =pyp Y m(K)K = DpKI K, s0)p(sil kK, 5p0)
—

where P, is the probability of each directed link occupied.
According to the early assumption, we choose the next immuniza-
tion central among the neighbor of the last immunization central
with probability 1/k”. The probability of choosing one of its
neighbor is 1/k. After immunizing Np times, we can get the
following inequation:

Vpk)y=(1-—)P < (1 —le,)NP ~e PK = (Vp(K)),

1
where V,,(k') is the value of the acquaintance which is not selected
in the Np times attempts according to the new principle and
(Vp(k'))a represent the value of the acquaintance which is not
selected in Np trials with the acquaintance immunization.

According to Bayles' rule, we get the following two equations to
simplify n;, (k)

PG Lk, K)pck| K

kIK,s,)= 8
p( ) PGl K)
L ke Pk <e-p/K S K1
pkIK,s) = P
_ p(kye—pk
T o<e bk >

where @(k)=p(k| k) =kp(k)/ <k >
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Based on the another equation

p(sil k,K) =p(sil k. K, sp¢)
— e—p/k' < e—p/k - k—1
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Fig. 3. A sample of Internet model with 100 nodes and 211 edges with no double
edges generated by GDTANG. (With node labels).
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we can get

ny41(k) = pvi~2gke =P*> "myk (K — 1)e=P/¥

k'

=n(kpy > _@(K)(K —1)vk—2e= /K
-

When Np — oo, the whole network tends to be stable and we
can get the critical condition equation

11 (k) =mny(k)

So we can get p. from the following equation:

Py 1= pkyk—1)v e 2Pe/k(s)
k

where p,— 1 corresponds to full immunization and we can easily
get the following important in Eq.:

fe=1=>"plop(silky=1=>"poy
k k

>1-3 " p(k)(vy )
k

where f is the number of nodes immunized in N trials

From this in equation we can get that choosing the nth central
point among (n—1)th central point's neighbor is much more
effective than choosing the central point randomly in the acquain-
tance immunization.

Our In-depth immunization method is based on this conclu-
sion. That means it have been much more effective than acquain-
tance immunization. Furthermore, we take the nodes value into
consideration in our method to be more close to real world.
Because we immunize one of the neighbor nodes which is of the
most value, the strategy can be considered as making use of the
advantage of target immunization in local world, which makes our
strategy much more useful than the intermediate strategy, which
immunizes a random neighbor of a random node. Taken the
intermediate immunization strategy as a bridge. We can conclude
that the intermediate immunization strategy is more effective
than classic acquaintance immunization, but performs worse than
our In-depth acquaintance immunization.
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Fig. 5. The network topology after cutting connections from 5(A) and 10(B) immunized nodes under the guidance of In-depth Acquaintance Immunization.
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3. Result

3.1. Computer simulation

In order to reveal a visual comparison between different
strategies, we simulate our strategy in a relatively real network.
We use GDTANG (The Geographic Directed Tel Aviv University
Network Generator) (Bar et al., 2005), a Perl program to generate
synthetic Internet-like topologies using an improved BA type
model. It produces networks with a power-law degree distribu-
tion, realistic maximal degrees and “Dense Core”, accurate number
of leaves and geographically meaningful clusters, which is an ideal
network generator.

To clearly illustrate our method, we created an Internet model
with 100 nodes and no double edges. Other network generating
parameters use default values. Importing data to Gephi, a network
analysis software, after some location adjustment, the network
shows in Fig. 3.

The simulation is based on the following assumptions:

. Infection or immunization has steps of time. Each step of time,
arandom node is infected, and we can immunize (recover) one
node (using different methods to choose which node should be
immunized).

. Immunized nodes cannot recover its neighbor nodes. But each
infected node has a chance of p;; to spread virus to its neighbor
nodes (node i is the infected node, node j is its neighbor node).
If not succeed, the attack will be continued in the next step of
time until the target is infected or immunized.

. An immunized (recovered) node cannot be infected again.

. Connections in the simulated network have directions.

Comparison p

maximum infected nodes

0.1 03 0.5

Y
=@ Indepth =@ Acquaintance

0.7

=

- Target Random

Fig. 6. The fluctuations of numbers of infected nodes during 100 steps of time
using four Immunization strategy (In-depth Acquaintance Immunization, Acquain-
tance Immunization, Target Immunization and Random Immunization) on GDTANG
network with various connection possibilities (p).
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Under these four assumptions, we program our In-depth
acquaintance immunization strategy and three common immuni-
zation strategies, the random immunization, the target immuniza-
tion and the acquaintance immunization.

To be generalized, we define every p=0.5, every v=1 in our
program. According to its network level, we choose T=3, and use
ecyzy defined in Section 2.3. Considering the uncertainty of
random selection in the program, we repeated the simulation for
200 times, and the In-depth acquaintance immunization results as
well as the original acquaintance immunization results are shown
in Fig. 4.

The results show that the In-depth acquaintance immunization
strategy has average maximum infected node numbers of 64.135,
while 79.030 in the original strategy, preventing 14.895 more
nodes in the network from being infected. In addition, it sup-
presses the epidemic spread more efficiently. From Fig. 4, in In-
depth acquaintance immunization, the increase rate of newly
infected nodes in each step is lower than the original one, so the
infected nodes number has become steady earlier.

We can have a clearer view of immunization process through a
sample immunization in the network.

In this sample immunization process, the first ten immunized
nodes of the In-depth acquaintance immunization are node 55,
node 1, node 6, node 14, node 5, node 10, node 3, node2, node 21
and node 19 (in Fig. 3). Node 55 is only a marginal node with a
degree of 4, but soon the strategy has traced top degree node
1 and other important hub nodes which are critical to the
suppression of epidemic. After these ten steps of immunization,
the connections in the center area of the network has become
sparse (shown in Fig. 5), and the spread is under control.

3.2. More simulations and comparisons

After proving that the In-depth acquaintance immunization
strategy is more effective than the original one on GDTANG
network, we continue to research on other network properties
that may influence its effect such as connection possibilities (p),
network scale (n), and different network topologies. We also
compare it with Target immunization and Random immunization
strategy in each simulation.

3.2.1. GDTANG network with various connection possibilities (p)

In the previous simulation, p=0.5 to better reflect comparison
caused by varied immunization strategies. We change p from 0.1 to
1 to further research its influence to the results. Results using four
strategies (In-depth Acquaintance Immunization, Acquaintance
Immunization, Target Immunization and Random Immunization)
are shown in Fig. 6 in the same line chart. Every simulation result
is the average number of 200 repeated times.

The general situations are similar to the previous simulation,
which are, target immunization performs best, In-depth acquaintance
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immunization closely follows, while other two are left behind. In-
depth immunization strategy is much better than the original
acquaintance immunization.

We can conclude that, the lower p, the harder a virus pass to its
neighbor and the lower maximum number of nodes infected. The
lower p also means that there is more time for the immunization
to be established, and after that, virus is easily controlled, so when
p=0.1, the differences between best and worst immunization
strategy are most evident.

3.2.2. Random graph with various scales
We further researched on other network topologies and con-
sidered the impact of scale (node numbers n).
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We generated directed random graph of 0.05 wiring probability
and 0.5 spread probability by Gephi. Network scale varied from
100 to 1000. Results are shown in Fig. 7.

In this case, due to its randomness, single node can hardly own
large degree, so target immunization is not perfect. While In-depth
acquaintance immunization still performs well, in most cases it is
the best immunization strategy as shown in the shadow area
in Fig. 7. The In-depth acquaintance immunization strategy has a
character of localized target immunization as is mentioned before,
which is clearly demonstrated in this set of simulation. It calcu-
lates NSI of a node according to its neighbors, which has much
stronger adaptability than other strategies.

3.2.3. Random graph with various wiring probabilities (1)

We further research on the density of connections in a network,
changing wiring probability (r) from 0.01 to 0.1. Node number n= 100,
spread possibility p=0.5. Results are shown in Fig. 8.

The increased r means more connections between nodes in a
network. As the connections increase, the degree of nodes increase
as well, which causes many nodes with high degree, so the target
immunization becomes the least effective when r=0.1. But that
case does not happen in both original and In-depth acquaintance
immunizations, and the In-depth one is perfect when r is small as
well. The density of connections may cause great differences to
other strategies, but to In-depth acquaintance immunization, its
impact is minimized due to its character of localized target
immunization.

3.2.4. WS-Small World Model with various replacement probabilities (r)
WS-Small World model is another important network topology.
We tested four strategies with various replacement probability (r)
from 0.001 to 0.5.
Node number n=500. Number of neighbors on each side of a
vertex is 2. Results are shown in Fig. 9.
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Fig. 11. An extreme case of two sub-network chained with a line of nodes (two
bigger nodes in the middle are not easy to be immunized using existing strategies).

The increasing r means that the network is more irregular.
When r is close to 0, network is a regular lattice, so In-depth
acquaintance immunization strategy immunizes nodes one after
another by its neighbor, which is caused by its continuous
immunization character for the convenience of potential value
nodes tracing. In this case, it becomes an obstacle. For random
immunization cuts lattice into random pieces, preventing virus
spreading to other pieces, so it becomes the most effective
strategy, but In-depth acquaintance immunization is unable to
do that. It only immunizes nodes from a certain part of network,
failing to immunize other parts. But while network is more
irregular, such case no longer exists.

So regular graph becomes the Achilles heel to In-depth immu-
nization strategy.

3.2.5. Scale free model with various exponents of the degree
distribution (y)

We generate directed Scale free model with the following
properties by scale free network generator in matlab. Number of
vertices:1000; exponent of the degree distribution: d from 2.095 to
2.83. Results are shown in Fig. 10.

The larger y means denser in a scale free network. From Fig. 10,
we find that in a sparse scale free network, the Target and In-
depth acquaintance immunization is still perform well, but there is
little difference between these four strategies when y is greater
than 2.501. When y=2.83, the maximum infected node number is
992.96 (In-depth), 993.04 (Acquaintance), 992.92 (Target) and
993.14 (Random), the best strategy (Target) is only 0.22 better
than worst (Random). In fact, towards so large and dense network,
any strategy is ineffective due to the rapid spread of virus, so it is
with little meaning to suppress virus in such a network.

4. Conclusion

The In-depth acquaintance immunization strategy is an
improvement on the original acquaintance immunization strategy.
The introduction of NSI (Network Structure Index) is of great
practical value, which ideally reflects the connection property and
surrounding influence of a node, helping our strategy to decide
and immunize a neighbor node with the greatest importance. This
immunization strategy do not need to know the global informa-
tion about the network like target immunization, but by the
information of nearby nodes, it proves to be more efficient in
finding and immunizing important neighbor nodes.

In our simulation, we made these following conclusion. In
GDTang and Scale-free network models, its performance is only
second to target immunization; in most random graph, it is even
the best strategy; while in WS-Small World Model, it is not
effective when network is highly regular. But, in general, it has
obvious advantage over the original acquaintance strategy. This
improved immunization strategy protects more nodes from get-
ting infected and has stronger ability to control spread rate.

In addition, its characters of localized target immunization and
continuous immunization enable it to adapt to different network
topology better and have the capability of finding large sub-
network and trace important nodes, especially when there are
many nodes which have low-degree but high betweenness cen-
trality in a network (Fig. 11). The unimmunized chain nodes are
highly possible to pass epidemic from one sub-network to another,
causing great damage. In this particular situation, random immu-
nization is still blind, acquaintance immunization has little chance
to immunize the chain nodes, and target immunization is the last
to consider immunizing the chain nodes.
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