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Abstract

Background: Image registration is an important research topic in the field of image processing. Applying image
registration to vascular image allows multiple images to be strengthened and fused, which has practical value in
disease detection, clinical assisted therapy, etc. However, it is hard to register vascular structures with high noise
and large difference in an efficient and effective method.

Results: Different from common image registration methods based on area or features, which were sensitive to
distortion and uncertainty in vascular structure, we proposed a novel registration method based on network
structure and circuit simulation. Vessel images were transformed to graph networks and segmented to branches to
reduce the calculation complexity. Weighted graph networks were then converted to circuits, in which node voltages
of the circuit reflecting the vessel structures were used for node registration. The experiments in the two-dimensional
and three-dimensional simulation and clinical image sets showed the success of our proposed method in registration.

Conclusions: The proposed vascular image registration method based on network structure and circuit simulation is
stable, fault tolerant and efficient, which is a useful complement to the current mainstream image registration
methods.
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Background
Image registration is an image processing step that
matches two or more images of different imaging devices
at multiple shooting times and angles, or from the same
scene for image fusion, expression and analysis [1, 2]. Ap-
plying image registration to vascular images by fusing and
reflecting same vascular structures captured from multiple
images to the same display can greatly help clinical diag-
nosis. For example, the registration between magnetic res-
onance angiographic images and digital subtraction
angiographic images can provide useful complementary
information for physicians during treatments [3].
For the vascular image registration, due to the com-

plicated imaging mechanism or diversified biological

structures, noises and differences pose challenges to the
registration. Medical images often contain complex
noise which decreases the imaging quality of vascular
targets, such as Gaussian noise from the sensitivity of
the sensors and salt-and-pepper noise from the medical
imaging equipment [4]. In addition, due to the diversity
in imaging mechanism, the objects captured in different
imaging modalities are not similar in appearance. Com-
puted tomography is superior in confirming the presence
of calcification [5]. However, irregular intravascular calcifi-
cation plaque and blood turbulence may lead to image ar-
tifacts in Magnetic resonance Imaging (MRI) [6]. Even for
the same imaging modality, such as MRI, scanning the
same subject with different machines or parameters at dif-
ferent time can also be different [7].
To solve these challenges, many vascular image regis-

tration methods have been proposed, which can be cate-
gorized into three approaches.
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For area-based registration approaches, such as cross-
correlation matching [8, 9] and mutual information [10, 11]
methods, the original image is directly used to estimate
correspondences, which is easily influenced by noises
or trapped in the local extremum. For feature-based ap-
proaches, a description of invariance (correlation coeffi-
cient [12], closed region [13], geometric features [14],
coherent point drift [15]) is obtained from the image
through different feature extraction methods for regis-
tration. However, due to the lack of significant features
in vascular structures, it is difficult to find stable fea-
ture points in registration.
Different from previous two approaches, graph-based

approach is a novel approach by extracting node properties
from relatively stable geometric features and topological
structures of the vascular images. Most of these methods
rely on the Euclidean distance or spherical distance
between feature points in the graphs network [16, 17],
which are able to match vascular structures with only
slight non-linearity. But when large non-linear deform-
ation or topology missing exists, it is difficult to get a
satisfactory result. A more advanced method using
graph-based approach is active searching [18], which
iteratively searches possible corresponding points in
graph network with Gaussian process regression model
and predicts more corresponding points. This method
can register images with large difference, but it is com-
plicated and computationally expensive, which is diffi-
cult to apply on large images.
In this paper, we propose a novel vascular image regis-

tration method to effectively and efficiently solve the
problem of matching large scale vascular images with
large non-linear difference. Our proposed method is
based on graph approach, taking advantage of geometric
features and topological structures of the vascular im-
ages. Our main contributions are 1) we determine struc-
tural salient points in graph network by Network
Structure Index(NSI), a feasible index calculated from
network structure, which avoids complicated calculation
of iteratively searching possible corresponding points in
active searching method. 2) A novel circuit conversion
model is proposed to match the large non-linear differ-
ences in registration, in which the spatial difference in
graph is reflected by voltage deviation. 3) Network de-
composition based on NSI and branch sequential match-
ing criteria is used to deal with large scale graph
network. Our methods are effective and efficient in

solving the problems of matching large non-linear differ-
ences in large scale graph network where previous
methods based on graph-based approaches failed.

Method
There are five main steps in our method, as shown in
Fig. 1. Firstly, both reference and sensed images are con-
verted to graph networks, which are decomposed by
Network Structure Index (NSI). Then, branches seg-
mented from network are matched by sequential match-
ing criteria. Afterwards, a circuit conversion model is
used to further convert graph network to circuit. Finally,
the voltage response is used for node matching and
image fusion.
Input data which could be processed by our method

can be either two-dimensional or three-dimensional vas-
cular images. Imaging modality is not restricted as long
as there is enough contrast between foreground and
background. High resolution is preferred for better
precision.

Graph network construction
Firstly, the reference image and sensed image are pre-
processed by region of interest selection and image re-
sampling for three-dimensional anisotropic images.
Then, the vascular structures are traced by an open-
curve snake tracing method [19, 20]. The vascular struc-
tures are used to create graph network with the radius
of points in vascular structures as the node weight. A
graph network is shown in Fig. 2.

Application of network structure index (NSI)
After constructing the graph network, the network de-
composition is an effective way to reduce the computa-
tional complexity. In our method, structurally salient
points in the network are determined for decomposition.
The structural saliency of a node should not only in-
clude the weight of the point W(v), but also need to
comprise the number of edges connected to it (the
degree of the node) and the value of surrounding
neighbors.
The degree of node is the most commonly used struc-

tural indicator. But it is difficult to reflect the local influ-
ence and connectivity of the node and fails to determine
the correspondence where a branch is missing or there
is a small interference branch in the neighborhood of
the branch point. The more accurate betweenness

Fig. 1 Flow chart of our method
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centrality [21, 22], on the other hand, is complicated in
calculation and depends on the global information in
network, which is sometimes unavailable when vascular
image is large in dimension or some structures are
missing.
In order to reflect the regional structural saliency of

each point with consideration of its connection, value
and influence in network, a novel Network Structure
Index (NSI) has been proposed in our previous work
[23]. By calculating the connectivity and weights in the
neighborhood of a node, an index that is more stable
and accurate than the node degree as well as more feas-
ible than the betweenness centrality is obtained. In this
paper, we use this index to detect and match structurally
salient points for network decomposition.
It is regulated that the structurally salient points have

degree of at least three. The principle of matching struc-
turally salient points is that the node with largest NSI in
a given neighborhood (5% image size, adjustable accord-
ing to vessel size and density) of reference image has a
corresponding node with largest NSI in the same neigh-
borhood of sensed image. Figure 3 shows a pair of corre-
sponding structurally salient points, the number next to
nodes is its id and NSI value. With two structurally

salient nodes in neighborhood from Fig. 3a, node 23
cannot become the corresponding structurally salient
point to node 26 in Fig. 3b due to its smaller NSI value
compared with node 25 in Fig. 3a.

Network decomposition
Since correspondence of structurally salient nodes has
been established with NSI, the network can be

Fig. 2 Graph network of a vascular image after vessel segmentation

Fig. 3 Example of a pair of corresponding structurally salient points
(in square shape with id number and NSI value marked beside, color
of node represent its NSI value, redder of node means higher NSI)
(a) is from reference image, (b) is from sensed image
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decomposed into branches and the branches separated
from each network need to be matched. In our method,
firstly the network is decomposed by selecting connected
traces between nearest corresponding structurally salient
points. Secondly, traces connecting from corresponding
structurally salient points on one end and node of which
degree is one on the other end in shortest path are se-
lected. Such decomposition sequence is able to avoid
selecting the same branch for multiple times and to en-
sure that the traces selected does not contain any struc-
turally salient points.
The first part of branches in selection can be matched

according to their identical corresponding structural sa-
lient points. However, to match branches from second
part of selection, more information is needed. Here, the
forward direction of starting point, the sum radius of
nodes in branch and the tortuosity of branch are se-
quentially used as the criteria. Flow chart shown in
Fig. 4.
The forward direction of starting point is the advan-

cing direction from the salient point to the first node of
the branch, where the counterclockwise angle from the
positive x direction is used for measurement. In our
method, 60° is used as the maximum allowable angular
difference during matching. If the difference of this par-
ameter between branches is within 60°, we should use
further criteria in determining the correspondence of
branches.
The sum radius of nodes can be approximated as the

volume of the vessel, due to the relative slow change in

radius of the nodes in branches. Here, a difference of
30% is used as the allowable amount for judgment. If
that parameter is still not discriminative enough for
matching branches, we should consider the last criteria.
The tortuosity of branch is the ratio of the distance ac-

cumulated between adjacent nodes in the branch to the
straight distance of the branch from the beginning node
to the end of node. For the vessels with large curves,
their tortuosity is high. As the final criterion, we only
compare the relative amount of tortuosity from several
branches for judgment.

Circuit conversion model
After the correspondence of branches in reference and
sensed image is established, the nodes in each corre-
sponding branch are matched. Due to the possible varia-
tions of vascular structures in reference and sensed
images, the node matching must be flexible and robust.
Conventional methods using Euclidean distance or
spherical distance [16, 17] are very sensitive to the small
length changes inherent to the biological structures. In
vascular images, there are usually small interference
branches near bifurcations, and branches may have par-
tial missing due to low image quality, thus such methods
are not suitable for more challenging registration. The
idea of using circuit to simulate graph network is en-
lightened from circuit simulation method [24, 25] which
is used to convert graph to circuit in solving graph iso-
morphism problems in a simple and robust approach.
We found the idea of designing a circuit conversion
model for registration of nodes in graph network prom-
ising, for a well-designed circuit is robust to certain
damage in element, it is predictable that a well-built
conversion modal is able to use the strength of circuit in
registration in a same way.
The circuit conversion model we proposed is that each

node is converted into a group of circuit elements (com-
bination of resistance, inductance and voltage source).
These elements are connected to form a circuit based on
graph connection, in which the nodal response voltage is
obtained by power excitation in circuit. Take the fifth
node of a branch as an example, the circuit conversion
result is shown in Fig. 5.
For each node in a branch, three important parameters

are converted into circuit elements, the radius of the
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For those <60° branches, 

whether sum radius of nodes 

in branch <30%
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N

Determine correspondence 

of branches

Each branch is 
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For those <30% branches, sort 

by their tortuosity

Fig. 4 Flow chart of sequential branch matching criteria Fig. 5 Circuit illustration of a branch by using circuit conversion model
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node r, the forward direction of the node deviated from
the forward direction of the whole branch θ, and the
NSI value of node. Considering (1) the generally irrele-
vance of curve and radius of vascular structures; (2) the
use of complex voltage number to present voltage is
available in Laplacian domain for circuit analysis; (3) the
chain-like structure of the vascular node needs to use in-
ductance to represent the imaginary part of voltage.
Therefore, the nodes are converted to a combination of
resistance and inductance to meet the following
relationship:

R ¼ r⋅ cos θð Þ
jwl ¼ r⋅ sin θð Þ

�
ð1Þ

For voltage acquisition, each voltage source is excited
at time t = ti, respectively. The voltage response of the
node is defined as the average nodal voltage from all the
response collected before the excitation till ti, aiming at
reducing the instabilities. Each voltage response of node
in a branch constitute the integrated voltage sequence of
this branch. The nodal voltage acquired for the fifth
node is shown by the probe in Fig. 5.
Our proposed circuit conversion model is a feasible

and effective way to transform the vascular characteris-
tics (thickness and curvature) to integrated voltage se-
quences, which is of physical meaning. For a vascular
structure with large radius and rich in bifurcations, its
complex impedance is high, so its weight in getting volt-
age distribution is usually high. In addition, its NSI value
of the excitation voltage is also large, leading to its even
higher voltage. From the perspective of the absolute
value of voltage, a branch with faster descending of the
voltage gradient (the voltage difference between the for-
ward and current node) reflects its fast trend towards
thinner area, as illustrated in Fig. 6. Given the voltage

argument, if there is an evident change in the argument
of the branch voltage sequence, it shows a large turning
point in the branch, as illustrated in Fig. 7.
The proposed method is not only reasonable, but also

with merits. Since the voltage is based on the overall re-
sponse from the whole circuit, the result of voltage will
not be drastically changed by a certain error node. Be-
sides, in the conversion model, the use of NSI value as
the voltage value for the excitation voltage source fur-
ther emphasizes the regional characteristics. The larger
NSI value means greater local influence of the node,
thus having larger weight for voltage response and
reflecting special characteristics in a branch. In addition,
the application of superposition of voltage power can
largely reduce the calculation complexity.

Node matching in the branch
Using integrated voltage sequence, nodes in each branch
can then be matched. The range of integrated voltage se-
quence Vb (from the sensed image) of a branch is firstly
linearly scaled according to the range of Va (paired
branch from the reference image) by Vb ' = kVb + b where
k and b are constants.
For each point in Vb ', search its reasonable matching

position in the Va sequence. The deviation of position is
described with three parameters: the leading node in
matching, the voltage difference and the voltage differ-
ence base node. For each node bi (voltage of Vbi ') to be
matched, search in the close region (20% of node
numbers in a branch, adjustable) for node whose Vaj ≤Vbi '
and Va(j+ 1) >Vb ' as its leading node in matching. Then cal-
culate ΔV1 = (Vbi ' −Vaj)/(Va(j + 1) −Vaj) and ΔV2 = (Va(j+ 1) −
Vbi
' )/(Va(j+ 1) −Vaj). If ΔV1 is smaller than ΔV2, select j as

voltage difference base node and ΔV1 as voltage differ-
ence, otherwise, select j + 1 as voltage difference base
node and ΔV2 as the voltage difference. The matching

Fig. 6 a A simulated vessel with thickness changed in middle. b The absolute value of its integrated voltage sequence. c The derivative absolute
value of its integrated voltage sequence (thickness changing point marked in circle)
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position (with three parameters) of all matching points
i in sequence b can be acquired.

Image fusion
The last step is to combine corresponding nodes and
branches in a fused image. As the integrated voltage se-
quence represents the structural features of the branches
at different locations, the voltage difference can be
understood as the deviation of locations. The voltage dif-
ference, which is the ratio of the voltage deviated from
the voltage between the leading node and the subse-
quent node (the forward node in the branch direction),
represents the deviation in distance between the leading
node and the succeeding node. The base node deter-
mines the direction of deviation.
Each of the corresponding node from sensed image is

marked according to deviation in the reference graph
network to form a fusion graph. In addition to marking
the corresponding nodes, those unmatched branches
also need to be marked in fusion image to present their
unique information. These branches have one end node
that has correspondence node already registered, using
that node as reference, shifting the unique branches to
these registered positions to fuse these branches.

Computational setup
We ran all the algorithms on a 2.9 GHz dual-core 64-bit
machine with 16 GB RAM. All 2D image registrations
were implemented in a combination of Matlab and
Mex-C++ functions. In 3D image registrations, we used
VTK for easier visualization and C++ for
algorithm implementation.

Results
To test effectiveness and efficiency of our method, we
use one set of simulated 2D images, one set of 2D retinal

fundus images and one set of 3D Time-of-Flight Mag-
netic resonance angiography images as test data. For a
better comparison between other state-of-the art vascu-
lar image registration methods, we tested along with a
graph-based approach named Active Testing Search for
Robust Graph Matching (ATS-RGM) [18] with both fine
and coarse alignment and a feature-based approach
named Coherent Point Drift (CPD) [15].
In our method, we use the default parameter men-

tioned previously. In ATS-RGM algorithm, we set sca-
le_factor = 20, other parameters using the case of ‘retina’
in the paper. For CPD algorithm, we use a non-rigid
configuration of the algorithm for all the experiments.
We set λ = 3, β = 3 and outliers = 0.2.

Simulation image
As an example, Fig. 8 is a set of simulated 2D vascular
images. There are several small interference branches
near bifurcations of large structures in the reference
image (Fig. 8a).
After Open-curve snake tracing, we can get graph net-

work with node number of 117 and 91 respectively. By

Fig. 7 a A simulated vessel with three evident turning points. b The argument of its integrated voltage sequence. c The derivative argument of
its integrated voltage sequence (turning points marked in circle)

Fig. 8 Example of a set of simulated images. a Reference image (b)
Sensed image
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calculating the NSI of nodes, the structurally salient
points (square nodes) are matched, as shown in Fig. 9.
In Fig. 9, the square nodes are the structurally salient

points (with id and NSI value marked in red) of the
graph network after matching. The NSI of these square
nodes are local maximum to avoid being mismatched by
other interfering small branches in the near region. For
example, the node id 25 in the reference graph is larger
in NSI value than that of node 23 by 3.2, becoming the
matching target.
According to the network decomposition method, the

branches are sequentially divided and matched. Second
kind of branches are matched according to sequential
matching criteria.
Taking node id 12 from the reference graph as an ex-

ample, its branching properties are shown in Table 1. It is
found that the difference between the branch id 1 and 8 in
the reference graph is less than 60° so that it needs further
information to judge correspondence. And then sum ra-
dius of nodes in each branch is calculated, finding the dif-
ference is beyond allowable percentage of 30%, which is
large enough to differentiate the correspondence.
The node matching within the branch is performed for

each set of branches. The matching position determined
by three parameters (leading node, the voltage difference
and the voltage difference base node) is shown in
Table 2.
The matching of each node is obtained by matching

each branch in turn, and the positional deviation

between two graphs is plotted on the fusion graph
shown in Fig. 10.
There are unique unmatched branches in the sensed

graph, which are added in the fusion graph. For example,
the branch starting from node id 31 in sensed graph is
shifted with same deviation of node 31 (4.1398 and
3.0534 in x and y direction) to be added in fusion graph.
After image registration, the same information in both

images is strengthened, and the unique information
from each image is fused.

Clinical image
The registration of the clinical images is similar to the
simulation images. A set of retinal fundus images is
shown in Fig. 11 which is from Deng K et al.1 [17].
In this set of images, registration should be mainly fo-

cused on how to match a number of blood vessels from
the same branching point. In our method, structurally
salient points are matched based on regionally max-
imum NSI, which is stable in finding corresponding
points. And branch matching is also accurate and effect-
ive by branch sequential matching criteria mentioned
above in this case.
Another set of Time-of-Flight Magnetic resonance

angiography images(TOF-MRA) acquired from Vascular
Imaging Lab in University of Washington is used to test
our method in 3D images. The subject was taken twice
scan for the same brain region within a week. Maximum
Intensity projection (MIP) of both images are shown in

Fig. 9 Matching result of structurally salient points (square nodes marked with id and NSI in red) and branches (marked with id, tortuosity and
total radius of branch in black) in reference graph (a) and sensed graph (b)
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Fig. 12. With open-snake tracing method, their traces
are extracted and shown in green lines in both images.
As mentioned before, our registration method is based

on graph network rather than directly using image in-
tensity, it is almost with same complexity for 3D and 2D
images. Note that the isolated structures in both images
are not registered in our experiment as they are likely to
be noises or trivial vessels.
Due to the similar process, we directly show the regis-

tration result in Fig. 13 and 14a. We can further use
visualization tool to render the fused vessels shown in
Fig. 14b.

Calculation
We tested the speed of each algorithm in processing 2D
image registrations. The fusion image along with process-
ing time is listed in Table 3. Blue and red nodes from our
method, blue and purple lines from ATS-RGM coarse
alignment, blue and red lines from ATS-RGM fine align-
ment, blue and yellow lines from CPD are reference and
fused nodes or lines respectively. Green circles from ATS-
RGM coarse alignment are control points. * means the
automatic registration for that algorithm is failed to find
corresponding control points, so manual correction is
needed. As mentioned in [18], there are two steps of align-
ment in ATS-RGM, and the processing time for fine

alignment based on coarse alignment does not include the
time for coarse alignment. It takes less than one second
for our method to register both of the image sets, while
CPD method needs several seconds and ATS-RGM is
much more time-consuming.

Fault tolerance
We tried to change the radius of a certain node in the
branch, and tested the influence of the variation on the
integrated voltage sequence of the branch. Taking the
branch 1 on Fig. 9a as an example, the radius of node id
10 was changed from 2.2037 to 0.01. This kind of error
is possibly occurred during errors in imaging. The influ-
ence of the integrated voltage sequence is shown in
Table 4. We find the difference of voltage before and
after the error occurs of all nodes is less than 1%. More-
over, it is found that the region with larger difference is
only at the end of the branch, and it does not cause ob-
vious interference to the first half of branch which has
more obvious branching features.

Discussion
Our method is an improved graph-based registration
method, which not only has the benefits of other graph-
based methods, but also has more advantages in stabil-
ity, fault tolerance and low computation complexity.

Stability
In our method, we use Network Structure Index to iden-
tify corresponding structural salient points, which is ef-
fective in determining interfere branches near bifurcation
area. For interfere branches are comparably low in NSI
due to its low weight and small connections, the main
branches are not matched mistakenly in all three cases
shown in last section, such as branches connected with
node id 25 in Fig. 9a.
Compared with using geodesic distance in determining

control points in ATS-RGM coarse alignment, when there
are interference branches near bifurcation, such as the situa-
tions shown in 2D registration cases above, the ATS-RGM
is easy to make wrong correspondence, leading to the failure
in simulated image set and large deviation in the retinal set.
CPD method deals poorly when there are missing

parts, such as the failure of matching one of the bottom

Table 1 Branches starting from node id 12 in reference image and sensed image

Reference image Sensed image

Branch id Tortuosity sum radius of nodes forward direction
of starting point

Branch id Tortuosity sum radius of nodes forward direction
of starting point

1 1.115 842.062 0.864 1 1.150 875.634 3.383

7 1.017 122.590 95.907 7 1.019 108.525 90.977

6 1.074 390.403 200.983 6 1.087 365.629 205.201

8 1.072 48.812 307.179

Table 2 Nodes matching of branch id 6 in reference image and
sensed image

Branch id from
sensed image

leading node in
reference image

voltage
difference

voltage difference base
node in reference image

1 1 0.00% 1

2 2 21.04% 2

3 3 25.85% 3

4 4 8.64% 4

5 5 8.05% 4

6 6 15.00% 5

7 7 6.50% 6

8 8 3.56% 8

9 9 1.85% 8

10 10 7.62% 9

11 11 0.00% 11
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branches in the top right image of Table 3, which is a
common problem for feature-based approaches.

Fault tolerance
We utilize the voltage conversion model, which has the
advantage of high fault tolerance based on the structure

of circuit. Because of the chain structure of voltage
sources in circuit, if there is an evident error in one
source, adjacent voltage sources can still describe its
local characteristics without losing much local informa-
tion. In addition, the voltage source excitation value is
the NSI value of this node, which reflects the

Fig. 10 Fusion graph after registration (blue nodes for reference nodes, red nodes for fused graph)

Fig. 11 A set of retinal fundus images for registration. a Reference image (b) Sensed image
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characteristics of the node within its neighborhood, and
NSI value will not change drastically when a certain
node in the region is changed, further ensuring the ac-
curate description to a branch when there is a certain
error node. Results in Table 4 have shown the impact of
the integrated voltage sequence when a node is drastic-
ally changed is less than 1%.

Calculation
Our method registers in graph-based approach, which
avoids the direct use of pixel value. The example 2D
image size is 100 × 100, containing 10,000 pixels. After

the conversion to graph network, we only need to calcu-
late based on more than 100 points and more than 100
connections. In addition, our method decomposes the
network into several branches by the stable identification
and matching of the structurally salient points based on
network structure, further decreasing number of points
to only a few dozens in each branch. Network decom-
position is also beneficial in processing large scale
graphs.
Except for the step of calculating gradient vector flow

and vesselness which are used in Open-curve snake tra-
cing, the NSI calculation and circuit conversion model

Fig. 12 3D TOF-MRA images in MIP view with tracing result painted in green lines. a Reference image (b) Sensed image

Fig. 13 Fused graph after registration (blue nodes for reference nodes, red nodes for fused graph)
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are all based on simple summation and multiplication,
which is fast to implement in program.
From the results in Table 3, our method is at least

hundred times faster than ATS-RGM and five times fas-
ter than CPD.
However, when there is large initial rotation, such that

the corresponding structural salient points are beyond

the allowable distance we defined, our method will be
ineffective. Similar situation will also appear in CPD as
stated in their paper.

Conclusion
In order to overcome the shortcomings of high noise
and large differences in registration of vascular images,

Fig. 14 a registration result for 3D TOF-MRA images (green lines from reference image, blue lines from sensed image, purple line for fused image)
(b) Fused vascular structures from the registration of TOF-MRA after surface rendering

Table 3 Fusion image and processing time of 2D images by our method, ATS-RGM and CPD

Chen et al. BMC Bioinformatics  (2017) 18:229 Page 11 of 13



as well as to achieve efficiency in registration, a novel
and effective method based on network structure and
circuit simulation is proposed in this paper.
In our method, both reference and sensed images are

converted to graph networks, which are decomposed by
Network Structure Index. Branches segmented from net-
work are then matched by sequential matching criteria.
A circuit conversion modal is used to further convert
graph network to circuit, the voltage response of which
is used for node matching and image fusion.
By implementing the method on both simulated and

clinical image sets, we find this registration method can
effectively establish the correspondence between nodes
and generate a fused graph network, with calculation time
significantly lower than two state-of-the-art algorithms.
We mainly focused on vascular registration of retinal

and MRA images in this paper. However, for other tubu-
lar structures or multi-modality image registration, this
registration method still has much value and can be fur-
ther researched in further work. In addition, our method
is based on the graph network generated from Open-
curve snake tracing method, the application scope of
which has not been fully investigated.
In summary, the proposed vascular image registration

method based on network structure and circuit simula-
tion is a useful complement to the current mainstream
image registration methods.

Endnotes
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