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Abstract. Time-of-flight (TOF) Magnetic Resonance Angiography (MRA) is a
useful imaging technique which reflects blood flow and vasculature information.
However, due to the low signal and contrast of arteries in TOF MRA, it is
challenging to extract vascular features such as length, volume and tortuosity,
through segmentation and tracing. Hence, in this paper, a simultaneous artery
tracing and segmentation method is proposed to a generate quantitative
intracranial vasculature map from TOF MRA. Instead of using original images,
segmentation from a neural network model is used to initiate tracing, avoiding
the low signal or contrast for small arteries. A tracing method is proposed based
on cross-sectional best matching, followed by an optimization scheme from the
multiplanar reformatted view. Centerline positions, lumen radii and centerline
deviations are jointly optimized for robust tracing within artery regions. Finally,
the refined artery traces are used for better artery segmentation. The method is
validated on eight TOF MRAs of both healthy subjects and patients with
cerebrovascular disease, showing good agreements with human supervised
tracing and segmentation results for representative features such as artery length
(<4% mean absolute difference), volume (>0.80 Dice), and tortuosity (<3%
mean absolute difference). Our method out-performs three other popular tracing
and segmentation methods by a large margin.

Keywords: Artery tracing � Artery segmentation � Magnetic Resonance
Angiography � Optimization � Multiplanar reformation

1 Introduction

Magnetic Resonance Angiography (MRA) methods, like Time-of-flight (TOF) allow
visualization of intracranial arteries without radiation dose or contrast agents. Beyond
the clinical use of MRA for stenosis identification, a whole brain vasculature map can
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be generated through digital reconstruction of intracranial arteries, such as artery
tracing and segmentation. The vascular features extracted from the vasculature map
include artery length, volume and tortuosity, which provides quantitative measure-
ments for pathological or blood flow conditions [1, 2]. However, due to the complex
network structure of human intracranial arteries, and the low signal intensity and low
image contrast for distal branches from TOF MRA, it is challenging for automated
quantifications of the vasculature map, especially for patients with compromised
cerebral blood flow due to cardiovascular diseases.

Artery segmentation and tracing from MRA are two methods used for digital
reconstruction of intracranial arteries in order to measure the vascular features.

Artery segmentation which classifies every voxel into artery or non-artery, allows
better visualization of artery structures and facilitates identification of stenoses and
aneurysms [3]. Existing automated MRA segmentation approaches include region
growing [4], active contours [3], and convolutional neural network [5]. However, artery
segmentation alone cannot determine the layout and inter-connected relation of
intracranial arteries, which limits the information in the vasculature map.

One solution is 3D artery tracing, which converts artery voxels into interconnected
tree structures with radius varying cylinders. The criteria for connecting neighboring
points is critical, for which local Hessian-based estimation [6], and Kalman filtering [7]
have been attempted. But the performance of the methods by tracing directly from the
original image may suffer due to the low artery signal or contrast, which is commonly
seen in TOF MRAs. To ensure robust tracing, refinement of the artery centerline by re-
centering is usually followed by tracing. Adjusting centerline positions by applying
intensity features [6] or segmentation results [8] from re-sliced 2D cross-sectional
planes is usually used, but the neighboring slice information is not considered. The
multiplanar reformation (MPR) of arteries, considered as straightening the artery along
its centerline (example in Fig. 4(c)), has been used in clinical reading and reported to
be beneficial for coronary and renal artery stenoses detection [9, 10]. MPR view
incorporates neighboring information and therefore is better suited for a global cen-
terline refinement on the whole artery and correction of errors in artery tracing.

This paper introduces a novel method by simultaneously performing artery tracing
and segmentation with the help of robust artery refinement in MPR views. Tracing and
segmentation use results from each other to improve their individual performances.
Instead of tracing directly from original images, artery segmentation from a deep neural
network model is used to enhance the contrast of small arteries and constrain artery
tracing in a restricted region. The artery refinement from MPR ensures trace smooth-
ness, radius fitness, and avoids centerline deviation. The refined traces can then be used
to further improve the artery segmentation results, so that both centerline features
(length, tortuosity) and voxel features (volume) of arteries are accurately extracted.

2 Method

The method has four steps: artery rudimentary segmentation, tracing from segmenta-
tion, MPR refinement and segmentation from tracing. Flow chart is shown in Fig. 1.
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2.1 Rudimentary Segmentation

Original images are normalized using the Nyul method [11], and rudimentarily seg-
mented using a neural network model [5]. Trained from the semi-automatedly seg-
mented arteries from more than 163 subjects [2], the model can segment small arteries
with low contrast to the background. Centers of each 3D connected region in the
segmentation image are considered as seed points to initiate tracing one at a time.

2.2 Tracing from Segmentation

From each position, a cross-sectional plane can be generated from each of the evenly
distributed positions around the half sphere towards the tracing direction with 30°
increments in each axis (in total 37 possible directions). Arteries are traced by itera-
tively finding the best matching cross-sectional planes based on the matching criteria.
Direction selection during one iteration as an example is shown in Fig. 2.

Matching Criteria. Three metrics are used to select the best matching cross-sectional
planes: circular similarity, neighboring similarity and signal change rate.

Based on the assumption that the cross-sectional plane along the centerline of an
artery is a circle [12], the circular similarity is calculated as the Dice similarity coef-
ficient (DSC) [13] of the segmented region in the cross-sectional plane with a perfect
circle of the same area. The circular similarity is 1 for perfect circle.

A smooth trace should be continuous between neighboring cross-sectional slices
both in geometry and intensity. The DSC for neighboring segmented regions, and the
relative signal difference in their center pixels from the original image are used for
evaluating neighboring relations.

Matching score is defined as weighted sum of circular and neighboring similarities
(weights of 0.8 and 0.2 used in this study) minus signal change rate. The highest score
is used for selecting the best match. As an example, in Fig. 2, the yellow direction has
higher score than the red one, so it is selected as the stretching direction.

Tracing Procedure. Initiated from a seed point in the artery region as a starting point
p0 ¼ xp; yp; zp

� �
, circular similarity is used to find the best matching trace direction ni

from the cross-sectional plane Ci u; vð Þ. Neighboring similarity is not combined, as
there are no neighbor slices available in the first iteration. The positions of p�1 ¼
p� ni and p1 ¼ pþ ni are added to the trace with the radius r0;1;�1 calculated from the
masked region in Ci u; vð Þ.

Fig. 1. Flow chart for the proposed method
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Starting from the second iteration, the trace is stretched at both sides in each iter-
ation until each reaches the ending criteria. Taking positive tracing side at iteration j as
an example, search space for next trace position is updated with tj ¼ pj�1 � pj�2 and
the normal direction along the tracing direction n0i yielding the highest metric from the
rotated cross-sectional plane C0

i u; vð Þ is used for stretching the traces to the new
position pj ¼ pj�1 þ n0irj�1. Radius of the target position rj is roughly estimated from
the masked area and used as the stride for the next iteration. Traced region in the
segmentation image is painted with zeros and the seeds inside the region are removed
to avoid repeat tracing.

The iteration on each side of stretching is ended when pj is out of image boundary,
or the maximum combined similarity from all C0

i u; vð Þ is below a certain threshold (0.1
in this study).

2.3 Artery Refinement from Multiplanar Reformation

The position and radius of the centerline based on cross-sectional plane matching does
not incorporate global information, therefore the refinement step applies MPR to
overcome centerline deviation and abrupt radius change along the centerline. A three-
stage optimization scheme is used for the artery refinement, i.e., trace position
refinement, trace radius refinement, and trace deviation correction.

Trace Position Refinement. The 3D position of points in the trace is refined using the
optimization function considering losses for trace smoothness and their intensity.

L1 pð Þ ¼
X

i
L1 pið Þ ¼

X
i

wdist dij jj j 1ð Þ þ c dij jj j 2ð Þ þ c d 2ð Þ
x;i þ d 2ð Þ

y;i þ d 2ð Þ
z;i

� �� �
� wint In pið Þþ Is pið Þ½ �

n o

ð1Þ

Fig. 2. Direction selection in one iteration of tracing. For illustration, the red and yellow
directions are selected from the 37 directions on the half sphere in the tracing direction. Three
metrics are calculated from the cross-sectional slices for deciding the best tracing direction.
(Color figure online)
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where di ¼ pi � pi�1ð Þ ¼ dx;i; dy;i; dz;i
� �

, In pð Þ and Is pð Þ are intensity values of nor-
malized (Mn) and segmented (Ms) MPR images at position of pi ¼ xi; yi; zið Þ. (1) and
(2) represent 1st and 2nd order of derivative. c is the parameter to control the first and
second order weights. wdist and wint are weights for controlling the smoothness and
intensity loss.

Trace Radius Refinement. After the trace position refinement, centerline positions
are fixed, and the radius of each point is refined using the following equation.

L2 rð Þ ¼
X

i
L2 ul;i; ur;i; vi
� � ¼

X
i
L2 l við Þ; r við Þ; við Þ

¼
X

i
wsmooth l 1ð Þ við Þþ r 1ð Þ við Þþ cl 2ð Þ við Þþ cr 2ð Þ við Þ

h i

� wgrad Mu l við Þ; við ÞþMu r við Þ; við Þ½ � ð2Þ

where l vð Þ and r vð Þ are the left and right boundary for artery radius in MPR image Mn.
Mu is the derivative of Mn in its horizontal direction.

Trace Deviation Correction. Ideally, the mean location of the left and right radius

boundaries l u;vð Þþ r u;vð Þ
2 in the MPR image should always be in the vertical center of the

MPR image v ¼ vmð Þ. Any deviation away from the vertical center in u direction

o ¼ l vð Þþ r vð Þ
2 � vm needs to be re-centered.

Iterative Refinement from Different Angles. MPR images Mdeg are reconstructed
using rotation angles from {0, 90, 45, 135} by repeating Rep times (3 in this study).
Arteries are iteratively refined every 25 iterations of tracing and at the end of tracing.

Nelder-Mead algorithm [14] is used for optimization in this study.

2.4 Segmentation from Tracing

From the refined traces, regions inside the tubes are filled to be the refined segmen-
tation results. As the trace is represented by a cylinder model, if a more detailed artery
area information is needed, cross-sectional planes can be generated along the centerline
and the artery region can be segmented based on refined radius boundary.

3 Evaluations

3.1 Accuracy for Quantification of Vascular Features

Four images each from a healthy community study [15] and a group of patients with
intracranial atherosclerosis [16] are used for evaluation. The data collections followed
local institutional review board guidelines. Three-dimensional TOF images were
scanned on 3.0T MR scanners with: repetition time/echo time = 25/3.5 ms, flip
angle = 20°, in-plane resolution = 0.35 mm � 0.35 mm, slice thickness = 1.4 mm.

Considering the unrealistic work load for manually labeling voxels for all regions
of intracranial arteries in 3D images, a semi-automated tool [17] is used for tracing
artery regions with manual corrections. The centerlines are considered as ground truth
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for the evaluation. As the completeness of artery detection is not our focus, only two
major clinically important arteries (from the distal internal carotid artery (ICA), M1
segment of middle cerebral artery, until the most distally clearly visualized segment)
per case are used for validation. Excessive traces are removed, and traces might be
reconnected at bifurcations to allow same branches being compared with the ground
truth.

Vascular features of artery length and tortuosity (length divided by the Euclidean
distance between the first and last point) are used to evaluate the tracing performance,
assessed by the mean percentage of absolute difference with the ground truth. DSC is
used to evaluate the segmentation performance (artery volume difference).

From Table 1, the mean absolute length and tortuosity difference is within 4 per-
cent, and the mean Dice similarity score of volume is more than 0.8, indicating
excellent agreement [18]. Performance in the disease group is slightly worse than the
healthy group. An example of 3D rendered artery traces with ground truth is shown in
Fig. 3. All the 3D renderings of arteries are in the supplementary materials.

Table 1. Extracted vascular features compared with ground truth.

Methods Subject
groups

Mean absolute
length difference

Mean
volume DSC

Mean absolute
tortuosity difference

Tracing with
refinement

Healthy group 1.86% 0.85 2.75%
Disease group 3.64% 0.80 2.94%

Tracing without
refinement

Healthy group 40.72% 0.53 20.94%
Disease group 16.87% 0.55 15.16%

Fig. 3. (a) MPR view for ICA (b) Tracing results generated from the proposed method (ICA_L:
green and R: red). (c) Ground truth for the traced arteries. (d) Tracing results without artery
refinement in the ablation test (Color figure online)
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The performance of this method is compared with other three artery segmentation
and tracing methods (colliding fronts, fast marching, iso-surface) implemented in open-
source Vascular Modeling Toolkit (VMTK, www.vmtk.org). The comparison results
for left side arteries from healthy subjects are shown in Table 2. All three comparison
methods suffer from weak signals in distal arteries, so that the tracing is stopped earlier.
Right side arteries are not processed due to the processing time. VMTK methods fail
for the diseased group. One visualization figure is in supplementary materials.

3.2 Continuity of Tracing

To evaluate the tracing continuity, a semi-automated snake based method [19] is used
to trace the ICA. Due to the tortuous ICA structure and flow artifacts reducing luminal
contrast, the snake method needs an average of 4.9 manually given seeds (including the
seed used in our tracing method) to trace the whole artery segment, but all arteries
traced by our method need only one seed, showing better performance.

The ablation test of artery tracing without refinement showed worse performance in
Table 1, and the tracing iterations are aborted earlier for 4 of the arteries.

3.3 Improvement for Segmentation

Confined in regions within traces, artery segmentation is further improved, especially
when multiple arteries are close to each other. An example is shown in Fig. 4.

Table 2. Performance comparison with other segmentation and tracing methods.

Methods Mean absolute length
difference

Mean volume
DSC

Mean absolute tortuosity
difference

Our method 2.33% 0.86 2.36%
Colliding
fronts

14.27% 0.69 7.91%

Fast
marching

33.55% 0.43 10.32%

Iso-surface 27.28% 0.73 11.62%

Fig. 4. Improved segmentation from tracing when two arteries are close. Cross-sectional slice
for normalized image (a), rudimentary segmentation (b) and improved segmentation (c)
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4 Limitations

Several limitations exist in this method. A selected set of major arteries from each
subject is assessed. A small sample size (N = 8) is used for validation. Parameter
tunings are also expected to further improve the performance.

5 Conclusion

In this paper, a simultaneous artery tracing and segmentation method with artery
refinement from MPR view is proposed. The use of segmentation results to trace
arteries allows tracing continuity and trace accuracy. The use of tracing allows cen-
terline features quantified from a specific artery. The use of MPR view for artery
refinement improves robustness by correcting mistakes in artery tracing.
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