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Development of a Quantitative Intracranial Vascular
Features Extraction Tool on 3D MRA Using Semiautomated
Open-Curve Active Contour Vessel Tracing

Li Chen,1 Mahmud Mossa-Basha,2 Niranjan Balu,2 Gador Canton,2 Jie Sun,2

Kristi Pimentel,2 Thomas S. Hatsukami,3 Jenq-Neng Hwang,1 and Chun Yuan2*

Purpose: To develop a quantitative intracranial artery mea-

surement technique to extract comprehensive artery features
from time-of-flight MR angiography (MRA).

Methods: By semiautomatically tracing arteries based on an
open-curve active contour model in a graphical user interface,
12 basic morphometric features and 16 basic intensity fea-

tures for each artery were identified. Arteries were then classi-
fied as one of 24 types using prediction from a probability

model. Based on the anatomical structures, features were
integrated within 34 vascular groups for regional features of
vascular trees. Eight 3D MRA acquisitions with intracranial ath-

erosclerosis were assessed to validate this technique.
Results: Arterial tracings were validated by an experienced
neuroradiologist who checked agreement at bifurcation and

stenosis locations. This technique achieved 94% sensitivity
and 85% positive predictive values (PPV) for bifurcations, and

85% sensitivity and PPV for stenosis. Up to 1,456 features,
such as length, volume, and averaged signal intensity for each
artery, as well as vascular group in each of the MRA images,

could be extracted to comprehensively reflect characteristics,
distribution, and connectivity of arteries. Length for the M1

segment of the middle cerebral artery extracted by this tech-
nique was compared with reviewer-measured results, and the
intraclass correlation coefficient was 0.97.

Conclusion: A semiautomated quantitative method to trace,
label, and measure intracranial arteries from 3D-MRA was

developed and validated. This technique can be used to facili-
tate quantitative intracranial vascular research, such as study-
ing cerebrovascular adaptation to aging and disease

conditions. Magn Reson Med 79:3229–3238, 2018. VC 2017
International Society for Magnetic Resonance in Medicine.
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INTRODUCTION

Vascular structure and function are important factors for
maintaining brain health. Increasing evidence indicates
that cerebrovascular disease is an underrecognized con-
tributor to dementia, even in the absence of brain infarc-
tions (1,2). A more comprehensive description of the
whole intracranial vascular map, as well as an accurate
quantification of vascular features, could allow us to
understand the effects of aging and other physiological/
pathophysiological conditions on cerebral arteries and
how such vascular changes impact brain health. Three-
dimensional time-of-flight (TOF) MR angiography (MRA)
(3) is widely used clinically to depict vascular anatomy
and pathology (4–6). Current clinical review of MRA
focuses on distinct stenoses or aneurysms in only the
major arterial segments. Comprehensive feature extrac-
tion using automated algorithms may provide a detailed
map of intracranial arteries from routine MRA, with
global as well as regional information on blood supply
that have been largely neglected.

However, it is challenging to comprehensively charac-
terize cerebral arteries from MRA images because the
cerebral vasculature is a complex network with substan-
tial interindividual variation (7). In addition, small but
anatomically important arteries such as communicating
arteries are harder to detect due to their relatively weak
signal resulting from slow or in-plane blood flow. An
effective feature extraction method that can identify both
large and small cerebral arteries, as well as provide
quantitative cerebrovascular information on MRA, is crit-
ically needed for complete feature extraction.

To date, there has been little effort to measure features
from vascular maps beyond 3D visualization, vessel seg-
mentation, and identification of stenosis or absent arter-
ies (8–10). Some existing vascular feature extraction
tools (11,12) are limited to four morphometric features
from each of the four anatomic regions of the intracranial
arteries. Wright et al. (13) used L-Measure, an open-
source tool to quantify 19 morphometric features from
six major arteries stemming from the circle of Willis
(CoW). However, tracing more distal arteries and labeling
arteries in more precise categories could facilitate more
detailed analysis.

In this study, we aimed to develop a comprehensive
semiautomated intracranial artery feature-extraction tech-
nique using improved approaches for automated vessel
tracing and labeling. Automated vessel tracing, which
converts raw pixel or voxel content in planar or volumet-
ric images to a topological and geometrical network with
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centerline and radius, is the most important step for vas-
cular feature extraction, as demonstrated from applica-
tions of retinal fundus images (14,15) and CT coronary
angiography (16,17). Tracing by using the active contour
model (snake) allows one to handle changes of topology
and adapt locally to the shape of complex structures
(18). The open-curve active contour model (19), which is
one of its improvements and is driven by gradient vector
flow (GVF) and traces without initial boundary, has been
successfully applied in tracing neural fibers (19–21) as
well as tree-like tubular structures (22), including cere-
bral vessels from CT angiography images (23). Recently,
the application of a neuronal tree reconstruction method
to MRA images has proved to be successful (13). With
similar intention, the open-curve active contour model is
likely to be suitable for MRA artery tracing after some
modification and optimization, based on its adaptive
stretching forces and smoothness preservation ability.

Moreover, the features provided by most existing 3D
visualization and analysis tools (24,25) are limited to
global geometric features such as length and volume,
whereas regional features provide more direct informa-
tion on vascular diseases (26,27). In addition, flow-
dependent intensity features, which are often ignored in
current segmentation algorithms, have potential value for
the characterization of intracranial arteries. For example,
high middle cerebral artery (MCA) velocity was found to
be predictive of stroke in children with sickle cell dis-
ease (28).

Regional features are only available when all the arter-
ies are correctly labeled. Therefore, we developed a new
method for automated labeling to avoid labor intensive
manual placement of branch points required by most
current methods (11,12). Although other automatic label-
ing methods exist, they cannot be easily applied to com-
prehensive intracranial artery labeling (29,30) because
those models cannot differentiate enough artery types
(> 24 types) to describe a complete arterial tree.

Therefore, the goal of this study was to develop a
semiautomated intraCranial artery feature extraction
(iCafe) technique that can comprehensively quantify
morphometric and intensity features of intracranial arter-
ies on MRA images. Based on an automated approach to
artery tracing and labeling, interactive human supervi-
sion can be performed to ensure accuracy. Initial com-
parison with neuroradiologist review was performed to
validate iCafe. By providing additional information on
cerebrovascular structure and function beyond what is
currently collected on MRA, iCafe presents a new oppor-
tunity to gain pathophysiological insights into the pro-
cesses of vascular adaptation to aging and disease
conditions in future population studies.

METHODS

MR Imaging

The algorithm was tested using eight prospectively
recruited subjects (54 6 17 years, 5 males), with clini-
cally documented intracranial arterial stenosis likely to
be secondary to atherosclerosis on clinical computed
tomography angiography (CTA). Patients with clinically
suspected central nervous system vasculitis, intracranial

dissection, previous cranial trauma, previous radiation,
and reversible cerebral vasoconstriction syndrome—or

patients who underwent prior intracranial arterial inter-
ventions—were excluded from the study. Patients were
scanned on a 3T Philips Ingenia Scanner (Philips Health-
care, Best, the Netherlands) using a standard head coil.

Three-dimensional TOF MRA imaging parameters were
as follows: Repetition time/echo time¼ 14.7/3.5 ms, flip
angle¼ 18�, in-plane resolution¼ 0.3 mm� 0.3 mm, slice

thickness¼1.4 mm, field of view¼ 190 mm*190 mm,
matrix¼360*228, and acquisition time¼ 116.79 6 21.57 s.
Local institutional review board approval was obtained for
all study procedures, and all subjects provided informed

consent prior to enrollment.

Feature Extraction

The open-curve active contour model was originally
designed as a neural fiber tracing method. However, the

neural fiber tracing method is not ideal for vessel tracing
given the different nature and scale of vessels compared
to neurons. Therefore, a series of modifications to the

open-curve active contour model were applied to trace
vessels: 1) re-slicing, intensity normalization, and rudi-
mentary segmentation before tracing; and 2) a combined
tracing approach with both original image and vesselness

image, described in further detail below. In addition,
arteries were labeled for feature calculation after tracing.

The iCafe feature extraction process can be divided
into image preprocessing, rudimentary segmentation,

vessel tracing, artery labeling, feature calculation, and
output. The workflow, along with example images at
each stage, are shown in Figure 1.

Image Preprocessing

MRA images were resliced using bicubic interpolation to
achieve isotropic resolution in 3D space; as in most cases,
the voxels were anisotropic. The absolute intensity values
of MR images do not have a fixed meaning; thus, a fast

and accurate intensity normalization method by Nyul (31)
was used to adjust intensities among cases in the data-
base. Based on the assumption that the histogram of each

MRA image is similar, intensities of interest (IoI) (10 per-
centiles as well as lower (0%) and higher (99.8%) percent
intensity values) were trained to find parameters of stan-
dard scale. In the transformation stage, the IoI of each

image was then mapped to the standard histogram by a
lookup table (LUT). The original intensity of each voxel
was then updated through the corresponding LUT.

Rudimentary Segmentation

A clear separation between background and vessel pixels
will enhance the gradient vector and benefit the detection
of small arteries. For this reason, rudimentary segmenta-

tion of the artery region using intensity thresholding was
applied before tracing. The Phansalkar local threshold
method (32) was used due to its local thresholding ability,
with minimum loss of vascular regions in a reasonable

processing time.
However, because the Phansalkar thresholding was

not suitable for 3D visualization, the Renyi entropy
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threshold method (33), a method that can remove most
background signal with the cost of some artery details,
was also used. It should be noted that artery tracing was
based on Phansalkar thresholded images to ensure capa-

bility of detecting small arteries, and traced results were
reconstructed and superposed into Renyi thresholded
images with clearer background for better visualization
(Phansalkar thresholded image shown in Fig. 1b; Renyi
thresholded image shown in Fig. 1d). With this
approach, users can see an accurately traced arterial tree
clearly.

Vessel Tracing

We improved the open-curve active contour model (19)

for a high-quality vessel tracing for MRA. With the origi-
nal open-curve active contour model, it is likely that two
vessels in close proximity would be traced as one, which
is particularly problematic for parallel arteries such as
the anterior cerebral arteries (ACA). Because the active
contour model (snake) traces through iterations (18), the
trace initialized by a seed point is stretched toward the
direction of largest tubular probability calculated from
gradient vector in trace endpoints. (19). This gradient-
based approach ensures elasticity and smoothness but is
limited in its ability to differentiate parallel vessels
because the intensity value between vessels is not low
enough to form strong gradient vectors to confine traces
to artery regions. Therefore, a combined tracing method
using both raw and vesselness images (Frangi vesselness

filtered (34) image) was devised to improve tracing of
parallel vessels, which works as follows: Initially, the
geometric center points of each connected region beyond
a certain threshold in the vesselness image, called seed
points, are found. In the first stage, the tracing process
starts stretching from the seed point according to inten-
sity value from the vesselness image. The current length
of vessels is calculated in each iteration. If the length
increases slower than 5% after an iteration, the trace is
then stretched based on the raw image instead as a sec-
ond stage until the length increase is below 5% after an
iteration again or until a maximum iteration number is
reached. The two-stage process also overcomes a well-
known disadvantage of the Frangi filter that vessels near
an arterial bifurcation are weakened after filtering (35)

because the locally tubular structure does not apply to
the area of branching. The first stage of tracing ensures
the accuracy in parallel vessels, and the second stage
avoids the vessel being cut off near bifurcation points.

Manual Editing

As a semiautomated technique, human supervision and
correction are feasible when using iCafe to ensure the
best quality of tracing. Three visualization methods
(maximum intensity projection (MIP) view, 3D view, and

cross-section view) are provided for observing artery
details, as shown in Figure 2. Each trace in the MIP view
or 3D view can be selected and edited. The operations
available for users include the following: merging two
traces together, splitting one trace into two, creating
branch connections between traces, trimming endpoints
of a trace, deleting traces, or removing outlier uncon-
nected traces. Seed points can also be added manually,
from which additional arteries can be traced using the
same automatic tracing method.

Artery Labeling

Artery labeling and categorization are necessary after all
vessels are traced to extract arterial segment-specific fea-
tures. Therefore, a semiautomated labeling method was
implemented. Twenty-four common artery types are
assigned (definition of artery types in Supporting Table
S1) based on 31 types of bifurcations of interest (BoI)

FIG. 1. Workflow for intraCranial artery feature extraction (the raw
image is shown in (a) and (c), the Phansalkar thresholded image is

shown in (b), and the Renyi thresholded image is shown in (d)).
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that are identified automatically. For those traces with
no label, BoI types are excluded because they are possi-
bly distal vessels beyond the named branches.

The identification of BoI type is based on a probability
model using the positional, directional, and topological
features.

� Positional likelihood: Assumes BoI positions of each
bifurcation type to follow Gaussian distribution, and
calculates probability density function (pdf) of each
bifurcation type from all the cases in the training set
(previously processed data). Positional likelihood of
the BoI for each bifurcation type was calculated
from the corresponding pdf over the maximum prob-
ability in that function.

� Directional fitness: Averaged branch directions for
each BoI type was calculated and normalized as
model type based on previous labeled data. Each
unlabeled BoI was then paired with an optimal
model type by calculating and finding the maximum
sum of inner product of all corresponding branch
directions from each model type.

� Graph topological likelihood: a structural metric net-
work structural index (NSI) (36) of BoI, which is a
weighted addition based on graph topological con-
nection that includes node degree, radius, and ves-
selness intensity, as well as their nearby neighbor
nodes. Large vessels with more connections to
neighbor nodes had larger NSI. Similar to positional
likelihood, the model assumes the NSI of each bifur-
cation type to follow a Gaussian distribution and
calculates topological likelihood from the pdf.

Using maximum a posteriori estimation, the possibili-
ties of each bifurcation to be each BoI type were calcu-
lated. The labeling procedure was applied sequentially.
Starting from the BoI with the highest probability and
least ambiguity (largest difference between first and sec-
ond possible types), BoI type was assigned in order. The
prior probability of all neighbors was updated when a
BoI type was assigned. Human inspection and correction
were then performed to correct for errors.

Each artery could be labeled after all BoI types were
assigned. Arteries with similar geometric and anatomical
properties can be further grouped together based on anat-
omy and flow distribution. The 13 vascular groups are

defined (definition of vascular group in Supporting

Table S2). Some of the vascular groups also have sub-

groups to differentiate left- or right-side features.

Feature Calculation

Based on the labeled arteries, morphometric features and

intensity features are calculated for each artery.
The 12 morphometric features are length, volume

(assuming artery as a cylinder with changing radius), tor-

tuosity (length over head–tail distance), surface area,

average radius, minimum bifurcation angle, cross-section

area, order (bifurcations toward internal carotid artery

(ICA) for anterior arteries or vertebral artery (VA) for pos-

terior arteries), distance to CoW, width (minimum sagit-

tal span), depth (minimum coronal span), and height

(minimum vertical span).
The 16 intensity features are max, min, mean, median,

10 percentiles (0%, 10%, . . ., 90%), sigma, and sum. The

intensity values are sampled from centerline points

along arteries from intensity normalized images for

calculation.
With 12 morphometric features and 16 intensity fea-

tures for each artery, grouped by each of the 24 artery

types or 34 vascular groups (6 overlaps), there could be a

total of (12þ 16)*(24þ 34 � 6)¼1,456 features extracted

for each MRA.

Output and Analysis

Artery traces were saved in SWC format (37). Each line

presents a point, which is comprised of sample number,

BoI type, x position, y position, z position, radius, and

parent sample number. iCafe is connected to MySQL

database for data management and custom query. Fea-

tures were arranged into five tables, recording case infor-

mation, landmark coordinates, image intensity percentile

for normalization (used for Nyul (31) normalization), ves-

sel, and point features. With user-specified queries, any

of the 1,456 features for each case could be retrieved for

analysis. Queries can be stored in the database to be

applied to any set of data with ease. Advanced queries

are also achievable through SQL scripts, such as calcu-

lating the difference of length in left and right anterior

proximal arteries in subjects with a complete CoW.

FIG. 2. Manual editing is facilitated by three views: (a) maximum intensity projection view with tracing results (green lines), (b) 3D view

with tracing results (green lines), and (c) cross-section view.
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Validation

Accurate tracing results and features are important in the
performance evaluation of this tool. However, validating
the tracing results and features is a challenging task for
human reviewers because the complicated intracranial
vascular structures in 3D space make it difficult for clini-
cians to segment and trace all the arteries through each
slice of 2D images. Therefore, we used an indirect vali-
dation method with three steps to prove the accuracy of
traces and features: 1) validate the 3D position of bifurca-
tions identified because they determine the start and end
points of most traces, as well as the connections between
them; 2) validate the positions of stenosis of main arter-
ies identified because they evaluate the radius measure-
ment of arteries; and 3) validate the length of labeled
arteries (main arteries) because length is one of the most
critical features from extraction and easy to measure
using other methods.

Validation of the 3D Position of Bifurcations

An experienced neuroradiologist marked the 3D position
of bifurcations using 2D slices of the source MRA
images; neuroradiologist marked bifurcations were con-
sidered the reference standard. The bifurcation points to
validate from one case were randomly chosen from all
the bifurcations of the MCA, ACA, or posterior cerebral
arteries (PCA). All the bifurcations from the stemming
bifurcation (bifurcation of ICA/MCA/ACA for MCA or
ACA branches; bifurcation of VA/PCA for PCA branches)
to the most distal branches were marked by the neurora-
diologist. These positions were then compared with cor-
responding iCafe-identified bifurcation positions. The
bifurcation points that were marked by both the radiolo-
gist and detected by the algorithm were counted as
agreement points, whereas those bifurcation points that
were detected only by the algorithm (spurious) or only
by the clinician (missed) were revisited and reviewed
together by the same clinician and a separate iCafe oper-
ator to determine which were true bifurcations. In cases
of nonresolution, a third rater was also consulted to
adjudicate the results. Sensitivity and positive predictive

values (PPV) were calculated to evaluate the performance
of bifurcation points found by the algorithm. Distance
between the clinician and iCafe bifurcation positions
was also calculated. The radius and order (level of bifur-
cations starting from ICA for MCA/ACA branches; VA
for PCA branches) for agreed, missed, and spurious
branches were calculated to evaluate the location of
agreed and disagreed bifurcations.

Validation of Stenosis Positions

Similar to the validation of bifurcation points, an expe-
rienced neuroradiologist independently marked the 3D
position of stenosis using 2D slices of the original MRA
images as ground truth while blinded to the iCafe anal-
ysis and patient clinical information. Due to the limita-
tion of imaging resolution and quality, we only focused
on the following large arteries or segments: 2� ICA
(carotid siphon to the bifurcation of ICA/M1 (first seg-
ment of MCA)/A1 (first segment of ACA)), 2�M1,
2�A1, 2�P1 (first segment of PCA), BA (basilar
artery), and 2�VA. Possible stenosis points located dis-
tal to bifurcation points were also excluded because
luminal measures change between parent and daughter
arteries. Then, the iCafe program generated all possible
stenosis points based on the relative radius of arteries,
with the calculation of the stenosis percentage based on
the ratio of the radius at the maximum stenosis point
over averaged radii in nearby normal artery points. We
set the threshold of stenosis percentage of 10% to avoid
the mild stenosis, which neuroradiologists cannot
detect confidently from 2D slices or may result from
noise in radius estimation. The neuroradiologist-
determined points of stenosis were compared to the
iCafe-generated stenosis points to determine accuracy of
the program.

Validation of Artery Length Measurements

In the third step, for validation of features extracted from
iCafe, length was selected for manual measurement. Ves-
sel length was measured by manually selecting center-
line points along the arteries. Experienced human

FIG. 3. (a) Maximum intensity projection view for a time-of-flight image. (b) Artery traces (green lines) using open-curve active contour

model alone. Some of the false traces are marked in red arrows, and some of the missing traces are marked in white arrows. (c) Artery
traces (green lines) using rudimentary segmentation before open-curve active contour model.

Comprehensive Artery Features Extraction From 3D MRA 3233



reviewers measured M1 segments (centerlines of large

arteries are easier to follow) using Philips Intellispace
Portal Software v. 7.0.61310.0 (Philips Healthcare). After
the centerline was drawn, length was measured on the

corresponding curved planar reformat image and com-
pared to length measurements using iCafe. The percent-
age of difference is calculated using Equation [1], where

N is the total number of measurements, and m1i and m2i

are the reviewer-measured and iCafe-measured length for
the i th M1 segment.

Diff ¼ 1

N

XN

i

jm1i �m2ij
m1iþm2i

2

� 100% [1]

RESULTS

Rudimentary Segmentation

To test the importance of applying the Phansalkar local
threshold method, we compared the tracing results with
and without using the threshold method before tracing,

as shown in Figure 3. The positions marked by arrows in
Figure 3b were verified by the clinician as missing traces
or incorrect traces. It should be noted that some of the

isolated arteries are also traced, but if a trace is labeled
with “no label” in both ends, it did not affect feature

extraction results.

Improved Tracing Method

To test the effectiveness of the combined tracing method,
we compared our tracing methods with tracing methods

based only on the raw image and the vesselness image,
as shown in Figure 4. We found the tracing method
based on the raw image alone led to two parallel arteries

merged into one, and the tracing method based on the
vesselness image alone led to dangling vessels. The red

line is the erroneously traced artery. However, the com-
bined method can depict arteries in parallel correctly for
all four cases in this experiment.

Artery Labeling

For artery labeling, the average BoI categorization accu-
racy by the prediction model was 98.51%. Manually

changing the type of BoI allowed remaining inaccurate

BoI types to be corrected. Each artery segment type was

labeled with a color for better visualization in 3D view.

An example is shown in Figure 5, with arteries labeled

in color in MIP and 3D views.

Feature Extraction

A total of 1,456 features were extracted from each case,

which were easily retrievable through the MySQL data-

base. Examples of the key features include average radius

of M1_L, distal branches length, total valid arterial vol-

ume, average normalized intensity of proximal arteries,

and average CoW segments tortuosity. Results of these

features from eight cases can be found in Supporting

Table S3.

Processing Time

iCafe was tested on an Intel Core (Intel, Santa Clara, Cali-

fornia, USA) i5-4210H CPU with 2.9 GHz and 16 GB

RAM. The processing time for preprocessing, automatic

tracing, and labeling was approximately 3 minutes. The

human supervision and correction time varied by subject

from 20 minutes to 1 hour.

Validation

On average, approximately 12 bifurcation points were

marked by the human rater for each case. Among bifur-

cation points, the algorithm detected 127 points, and the

human rater marked 99 points. Eighty-nine of them were

agreed upon by the algorithm and human rater (having

corresponding relations). The deviation distance of

points was 0.328 6 0.444 mm, which is close to the image

resolution of 0.297 mm per voxel. Thirty-eight of the

bifurcation points detected by the algorithm were not

marked by clinician, and 10 of the bifurcation points

marked by the clinician were not detected by the algo-

rithm. Nineteen of the 38 bifurcation points only

detected by the algorithm were determined to be real

(i.e., were missed by the clinician in the first review).

However, the remaining 19 points were spurious points

detected by the algorithm. For the 10 points that the

algorithm failed to detect, it was concluded in the second

FIG. 4. (a) Tracing two parallel arteries directly in the raw MR angiography image by the open-curve active contour model leads to the

problem of two arteries merging into one. (b) Tracing in the vesselness image by the open-curve active contour model leads to dangling
arteries and leaves some small arteries untraced. (c) Tracing by combining the vesselness and raw images ensures arteries are correctly

traced. Blue circles show the radius of each point.
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review that three of them were incorrect and seven were

missed by algorithm. Based on this validation result, we

could calculate the sensitivity of the algorithm for detect-

ing bifurcations as (89þ 19)/(89þ 19þ 7)¼94%, the PPV

as (89þ19)/(89þ 19þ 19)¼ 85%, the sensitivity of the

human rater as (89þ7)/(89þ 19þ 7)¼ 83%, and the PPV

as (89þ 7)/(89þ10)¼ 97%.
The radius and order (level of bifurcations starting

from ICA as first order for anterior circulation branches

and VA as first order for posterior circulation branches,

with an addition of one order for each intervening seg-

ment prior to the targeted branch point) for agreed,

missed, and spurious branches are shown in Table 1. For

missed bifurcations, five out of seven were tiny branches

of lenticulostriate arteries near M1 branches; thus, their

average radius was large and order was low. For spuri-

ous bifurcations, the smaller radius and higher order

indicates they are most likely to be small branches in the

distal area of the arterial tree.
The reviewer identified 13 stenosis positions among

the eight cases. All the stenosis positions were deemed

by the algorithm to be somewhat stenotic (>0%). How-

ever, only 11 of them (sensitivity 11 of 13¼ 85%) had

stenosis percentage higher than the predefined thresh-

old. Meanwhile, there were two false positive positions

(PPV 11 of 13¼ 85%) by the algorithm, which were con-

sidered by the reviewer as artefactual luminal narrowing

due to flow dephasing resulting. We also compared aver-

age radius, vessel length, average normalized intensity,

and tortuosity, which could be associated with athero-

sclerotic stenosis, between six stenotic artery segments

and their contralateral nonstenotic counterparts (stenotic
segments without contralateral counterparts were not
included). The average radius on the diseased side was
0.21 mm less (P value 0.048 by paired t test), and the
average normalized intensity was only 81% of the non-
stenosed side (P value 0.037 by paired t test). Vessel
length and tortuosity were not different between stenotic
and nonstenotic side.

The reviewer-measured length of the M1 segment of
the MCA was compared with the algorithm. The average
difference between the two measures was 3.15%. The
intraclass correlation coefficient of the two measure-
ments was 0.97. The Bland Altman plot is shown in Fig-
ure 6.

DISCUSSION

iCafe is able to trace and label intracranial arteries and
extract quantitative features from widely available TOF
MRA data. Therefore, this technique provides an impor-
tant method for obtaining morphometric and signal
intensity features of intracranial arteries globally and
regionally. iCafe measurements include information on
both large and small arteries and can be a supplement to
perfusion imaging (38,39). With accurate regional fea-
tures from precisely labeled artery groups, iCafe presents
a quantitative tool for future research, such as examining
the effects of aging and disease on intracranial
cerebrovasculature.

The eight MRA images were obtained from prospective
scans performed in patients with intracranial atheroscle-
rosis, providing an equivalent imaging environment to

FIG. 5. Arteries labeled with their anatomical names shown with color lines in three directions of maximum intensity projection (first row)
and 3D view (second row).

Table 1

Number, Radius, and Order Measurement for Agreed, Missed, and Spurious Bifurcations (average 6 standard deviation)

Number Radius of Bifurcation Branch (mm) Order of Bifurcation Branch

Agreed bifurcations 89 0.895 6 0.476 5.464 6 2.884

Missed bifurcationsa 7 1.446 6 0.502 0.933 6 0.294
Spurious bifurcationsb 19 0.545 6 0.200 5.895 6 2.075

aMissed bifurcations: bifurcations identified by neuroradiologist (ground truth) but not by iCafe.
bSpurious bifurcations: bifurcations identified by iCafe but not by neuroradiologist (ground truth).
iCafe, intraCranial artery feature extraction.
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vasculopathy patient populations. The performance of

iCafe was evaluated on these more challenging diseased

patients rather than on healthy volunteers, proving its

applicability on future analysis of clinical cases.

Algorithm

Other general-purpose automatic image segmentation, or

tracing tools such as 3D Slicer (24) or ImageJ (40), are

likely to fail in automatic processing under complicated

situations, for example, in regions with many intertwined

distal MCA branches. These failures would also be diffi-

cult to identify by human supervision. iCafe is a human

supervised semiautomated technique optimized for

detecting and analyzing MRA. iCafe is implemented in a

user-friendly graphical user interface with which opera-

tors can monitor and supervise the artery tracing and

labeling process through easy operations and three differ-

ent visualization methods to ensure high accuracy of

extracted features.
We chose the open-curve active contour model (19) for

artery tracing for the following reasons: 1) As a deform-

able model, the active contour model (snake) provides

flexibility in tracing vessels with variable geometries; 2)

the open-curve active contour model can be initialized

automatically from a single seed point without a human

specified contour; 3) there is precedent (13) that a neural

tree reconstruction method could be adapted for MRA

application; and 4) the open-curve active contour algo-

rithm is open source under Apache License 2.0.
Because the open-curve active contour model is based

on GVF with low-contrast MRA images, using the open-

curve active contour model alone is inadequate to pro-

duce satisfactory results (shown in Fig. 4). Applying the

Phansalkar local threshold method before tracing (in Fig.

4c) is effective in detecting smaller distal branches. The

reason is that a clear background enhances gradient vec-

tors and Frangi-filtered images, which are critical in

determining the seed points and to control stretching

directions of traces in the model. In addition, the seg-
mentation also roughly confines the artery traces within
the foreground region, avoiding the traces leaking to the
background.

Features

A large number of features can be extracted using iCafe
based on artery types and features, in contrast to previ-
ous methods. A detailed description of the artery tree
and a comprehensive feature extraction may provide
clinical and investigational help by identifying and char-
acterizing pathology that may be missed with a limited
number of features. In addition to common morphomet-
ric features, intensity features in each artery or vascular
group are also extracted. Because the intensity value is
an indicator to blood flow, intensity normalization
among all the data in the database may have potential
value in analyzing these intensity features.

All the information of the vascular tree is stored in a
well-organized database for easy retrieval. The features
are not limited to 1,456 because more customized fea-
tures are available for specific tasks, such as stenosis
measurement, and identification of vascular asymmetries
between the left and right hemispheres.

Validation

Precise characterization of vascular anatomy is important
for understanding cerebrovascular diseases (41).

Detailed human tracing of the intracranial arterial tree
is difficult, which was the impetus for the development
of iCafe. The challenges of tracing intracranial arteries
lie in the precise identification of branching points. To
validate a comprehensive intracranial artery map, previ-
ously used methods such as observing the tracings in a
perpendicular view (13) are insufficient. In our study,
bifurcation and stenosis points along arterial branches
were marked and compared, which is more robust and
allows tracing accuracy validation. Additionally, length
measurements were compared with results from a com-
mercially used measurement software. These validation
experiments provide preliminary support that iCafe-
extracted features can be used in future analysis in large
population-based studies.

The deviation between the expert-marked and iCafe-
traced bifurcation points approximated the imaging reso-
lution, indicating minimal difference. The high sensitiv-
ity and PPV indicate that bifurcation positions detected
by iCafe are valid and accurate. We also found that most
disagreements in the position of bifurcations were small
branching arteries with relatively low signal.

It should be noted that the identification of bifurcation
points is a challenging task, even for expert human
reviewers. Missing and deviated bifurcation points arise
for many reasons, such as low signal near branch ends
caused by slow or in-plane flow, very small arteries
located close to large arteries, and irregular branching
patterns.

The validation of stenosis positions is aimed at prov-
ing the accuracy of radius measurements of traces and
exploring its potential clinical uses. The high sensitivity
and PPV of stenosis detection has shown that iCafe can

FIG. 6. Validation of length measurement of the M1 segment of

the middle cerebral arteries.
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accurately describe radius variations along artery seg-

ments. With further validation, iCafe could serve as an

initial clinical evaluation tool to lessen the burden on

radiologists in MRA.
Feature differences between diseased artery segments

and the normal contralateral side indicate that iCafe

could potentially contribute biomarkers for vascular dis-

ease analysis in future research. More investigation is

necessary, however.
Due to the limitation of human measurement, only

length of large arteries was assessed for feature valida-

tion. The difference between human-measured and

iCafe-generated M1 segment length was low. Any differ-

ence in results may have occurred from the reconstruc-

tion when converting 3D images to 2D for manual

measurement. In addition, the number of centerline

points that a human reviewer selected will also influ-

ence the measurement. Overall, the validation showed a

high level of agreement.

Limitations

Although a large number of features can be derived

using iCafe, only a limited set (bifurcation, stenosis

positions, and vessel length) were validated in the cur-

rent study. This limitation is mainly due to the diffi-

culty in obtaining human-based tracing of the entire

vasculature and the limitations of currently available

measurement tools.
iCafe was implemented using Cþþ on the Windows

platform (Microsoft Corporation, Redmond, Washington,

USA) only. Because the underlying graphical user inter-

face framework is cross-platform-supported, iCafe can be

further developed on other platforms to meet the needs

of different clinical and research environments.
Three-dimensional TOF MRA images were used to test

iCafe, but we believe with some modifications that iCafe

could be applied to other bright blood-imaging techni-

ques such as contrast-enhanced MRA, CT angiography,

or 3D digital subtraction angiography.
The processing time is between 20 minutes to 1 hour,

mostly due to time needed for human intervention and

correction during the manual editing stage. A fully auto-

mated algorithm will help to reduce processing time,

allowing for better clinical access. More powerful and

accurate automated tracing and labeling methods are

planned for future development.

CONCLUSION

A semiautomated quantitative measurement tool for

intracranial arteries from 3D TOF MRA images has been

developed and shown to provide accurate tracing of

intracranial arteries. Through its ability to provide novel

imaging biomarkers for cerebrovascular disease, it may

facilitate new research and clinical approaches.
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SUPPORTING INFORMATION

Additional supporting information may be found in the online version of this
article.

Table S1. Intracranial artery segments classified in iCafe
Table S2. Definition of vascular groups
Table S3. Example features extracted from iCafe (Average 6 standard devi-
ation of eight cases processed)
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