

COLLEGE OF ENGINEERING

UNIVERSITY of WASHINGTON

COMPUTER VISION

Intracranial Artery Segmentation Using Convolutional Autoencoder

Li Chen, Yanjun Xie

Background

Finding an robust and effective way to segment and trace intracranial artery features from Time-of-flight (TOF) magnetic resonance angiography (MRA) is essential for

- Study cerebral blood supply
- Finding intracranial artery variations
- Evaluation of intracranial vascular features
- Accurate vessel segmentation method is the critical step.

Task

Finding intracranial arteries with convolutional neural network.

Challenges

- 3D image segmentation
- Limited number (49) of MRA images
- Hard to label ground truth and may not be perfect
- Many parameters to adjust in neural network

Label image as ground truth

Original TOF MRA image from Maximum Intensity Projection view

METHOD

Dataset:

49 sets of 3D MRA images (size: 620*620*243, same imaging parameters from same machine)

- Arteries labeled previously (traces of center points and radii)
- Training set: 46 images
- Validation set: 2 images
- Testing set: 1 image

Preprocess

Generate Label image: 3D traces rendered in VTK with Laplacian smoothing and voxelized to label image, with 1 for artery, 0 for nonartery.

Right: One slice of label image patch

Network structure:

8-layer Convolutional autoencoder (CAE)

- · Encoder: represent extracted features with latent variables
- · Decoder: produce a result with latent variables.

Contact			
Li Chen	Email: cluw@uw.edu		
Yanjun Xie	Email: yanjunx@uw.edu		

Training

Use patches of 16*16*16 extracted from 3D original image and label image as input and output:

- Regional similarities of artery structure
- Limited images available, much more if cutting into patches
- Memory and calculation concern, over 93M voxels each image
- Largest artery diameter rarely exceeds 16 pixels
- Extracting patches with different sliding strides to balance samples between artery and non-artery patches

Loss function: binary cross-entropy Optimizer: Adam

Training using ~15k patches from one image at a time, trained 5 epochs before next image. Repeat when all images trained.

Predicting

Predict from patches with overlap for smoothing

Thresholding for binary classification

Morphometry operation: Close (dilate+erode) connect broken area

Parameter optimization

Tune a list of parameters to improve performance (see Table 1) Evaluated and chosen considering

- Top Youden index (True Positive Rate False Positive Rate)
- Area Under Curve (AUC) from ROC curve
- Highest accuracy with best threshold
- Calculation and memory cost for implementation

RESULT

Table 1: Performance between different parameters for training neural network final choice marked in hold

	noural notificitit, inter onorice interitor in pola						
Parameter type	Parameter selection	Youden	AUC	Highest			
Activation function	ReLU	0.91459	0.98916	0.99707			
	Tanh	0.90775	0.98753	0.99699			
	Sigmoid	0.00210	0.49904	0.99504			
Convolution layers	1	0.90813	0.98957	0.99709			
	2	0.91767	0.99267	0.99731			
	3	0.91698	0.99211	0.99715			
Kernel numbers	16, 8	0.91836	0.99221	0.99718			
	32,16	0.91767	0.99267	0.99731			
	64, 32	0.90115	0.98874	0.99734			
Up-sample method	Up-pooling	0.91375	0.99272	0.99731			
	Deconvolve with stride	0.91446	0.99299	0.99716			
Down-sample	Max-pooling	0.91698	0.99211	0.99715			
method	Convolve with stride	0.89896	0.98941	0.99692			
Images trained	15	0.87975	0.98995	0.99682			
	15+31	0.91297	0.99302	0.99740			
Repetition	1	0.90890	0.99067	0.99713			
	2	0.91865	0.99244	0.99730			

3D rendered segmentation results of Top left: Probability image predicted from CAE Top right: Binary image after thresholding predicted image Bottom left: Renyi Entropy [1] thresholded image Bottom right: Phansalkar [2] thresholded image

Train with optimized parameter on work station (Intel® Xeon® CPU E5-2630 v3 @2.4GHz 8 cores, 32 GB Memory, NVIDIA GeForce GTX TITAN X on Windows 7)

About 1 minute per image per epoch, 592 minutes in total Compare with best threshold and local threshold method provided in ImageJ, binary classification performance shown in Table 2

Table 2: Comparison of binary classification performance	with					
traditional methods						

	Accuracy	Sensitivity	Specificity	Precision				
CAE	0.997413	0.578091	0.999503	0.852728				
CAE with close	0.997419	0.580661	0.999495	0.851610				
Renyi Entropy [1]	0.994823	0.504220	0.997268	0.479052				
Phansalkar [2]	0.866895	0.932149	0.866570	0.033638				

Conclusions

The structure of 8-layer autoencoder with optimized parameters was effective in segmentation of intracranial artery from TOF MRA images with binary classification performance better than two traditional image processing methods

Future work

Combining patch origin into neural network Training with more data Test with other machine learning algorithms: denoised autoencoder, adversarial autoencoder, variationally autoencoder,

Reference

[1] J. N. Kapur, Comput. Vision, Graph. Image Process, 1985. [2] N. Phansalkar, ICCSP 2011.

